Concept explainers
(a)
Interpretation:
The given phenol has to be named.
Concept Introduction:
When one hydrogen atoms are replaced by a hydroxyl group in benzene is known as phenol. If the other hydrogen atoms present in phenol are replaced by other atoms or groups are known as phenol derivatives.
Phenol derivative with one substituent:
IUPAC system of naming phenol derivative considers phenol to be a part of main name. The numbering is given in a way that the substituent gets the least numbering possible.
Ortho- means disubstitution in 1,2
Meta- means disubstitution in 1,3
Para- means disubstitution in 1,4
In all the above derivatives of phenol, the first position is occupied by hydroxyl group.
Phenol derivatives with two or more substituents:
More than two groups are present in the benzene ring means, their positions are numbered. The numbering is always done in a way that the carbon atom bearing substituent gets the lowest numbering possible. If there is a choice of numbering system, then the group that comes alphabetically first is given the lowest number.
(b)
Interpretation:
The given phenol has to be named.
Concept Introduction:
When one hydrogen atoms are replaced by a hydroxyl group in benzene is known as phenol. If the other hydrogen atoms present in phenol are replaced by other atoms or groups are known as phenol derivatives.
Phenol derivative with one substituent:
IUPAC system of naming phenol derivative considers phenol to be a part of main name. The numbering is given in a way that the substituent gets the least numbering possible.
Ortho- means disubstitution in 1,2
Meta- means disubstitution in 1,3
Para- means disubstitution in 1,4
In all the above derivatives of phenol, the first position is occupied by hydroxyl group.
Phenol derivatives with two or more substituents:
More than two groups are present in the benzene ring means, their positions are numbered. The numbering is always done in a way that the carbon atom bearing substituent gets the lowest numbering possible. If there is a choice of numbering system, then the group that comes alphabetically first is given the lowest number.
(c)
Interpretation:
The given phenol has to be named.
Concept Introduction:
When one hydrogen atoms are replaced by a hydroxyl group in benzene is known as phenol. If the other hydrogen atoms present in phenol are replaced by other atoms or groups are known as phenol derivatives.
Phenol derivative with one substituent:
IUPAC system of naming phenol derivative considers phenol to be a part of main name. The numbering is given in a way that the substituent gets the least numbering possible.
Ortho- means disubstitution in 1,2
Meta- means disubstitution in 1,3
Para- means disubstitution in 1,4
In all the above derivatives of phenol, the first position is occupied by hydroxyl group.
Phenol derivatives with two or more substituents:
More than two groups are present in the benzene ring means, their positions are numbered. The numbering is always done in a way that the carbon atom bearing substituent gets the lowest numbering possible. If there is a choice of numbering system, then the group that comes alphabetically first is given the lowest number.
(d)
Interpretation:
The given phenol has to be named.
Concept Introduction:
When one hydrogen atoms are replaced by a hydroxyl group in benzene is known as phenol. If the other hydrogen atoms present in phenol are replaced by other atoms or groups are known as phenol derivatives.
Phenol derivative with one substituent:
IUPAC system of naming phenol derivative considers phenol to be a part of main name. The numbering is given in a way that the substituent gets the least numbering possible.
Ortho- means disubstitution in 1,2
Meta- means disubstitution in 1,3
Para- means disubstitution in 1,4
In all the above derivatives of phenol, the first position is occupied by hydroxyl group.
Phenol derivatives with two or more substituents:
More than two groups are present in the benzene ring means, their positions are numbered. The numbering is always done in a way that the carbon atom bearing substituent gets the lowest numbering possible. If there is a choice of numbering system, then the group that comes alphabetically first is given the lowest number.
Want to see the full answer?
Check out a sample textbook solutionChapter 3 Solutions
Organic And Biological Chemistry
- Drawing Arrows 1 I I 1 heat 1 51 MO + Drag To Und Settings Done 0 0 Jan 31 3:5arrow_forwardDon't used hand raitingarrow_forwardGramicidin A can adopt more than one structure; NMR spectroscopy has revealed an “end-to-end” dimer form, and x-ray crystallography has revealed an “anti-parallel double- helical” form. Briefly outline and describe an experimentalapproach/strategy to investigate WHICH configuration (“end-to-end dimer” vs “anti-paralleldouble helical”) gramicidin adopts in an actual lipid bilayer.arrow_forward
- Don't used hand raitingarrow_forwardCHEM2323 Problem 2-24 Tt O e: ל Predict the product(s) of the following acid/base reactions. Draw curved arrows to show the formation and breaking of bonds. If the bonds needed are not drawn out, you should redraw them. + BF3 (a) (b) HI + (c) OH -BF Problem 2-25 Use curved arrows and a proton (H+) to draw the protonated form of the following Lewis bases. Before starting, add all missing lone pairs. (a) (b) :0: (c) N 1 CHEM2323 PS CH02 Name:arrow_forwardCHEM2323 Problem 2-26 Tt O PS CH02 Name: Use the curved-arrow formalism to show how the electrons flow in the resonance form on the left to give the one on the right. (Draw all lone pairs first) (a) NH2 NH2 + (b) Problem 2-27 Double bonds can also act like Lewis bases, sharing their electrons with Lewis acids. Use curved arrows to show how each of the following double bonds will react with H-Cl and draw the resulting carbocation. (a) H2C=CH2 (b) (c) Problem 2-28 Identify the most electronegative element in each of the following molecules: (a) CH2FCI F Problem 2-29 (b) FCH2CH2CH2Br (c) HOCH2CH2NH2 (d) CH3OCH2Li F 0 0 Use the electronegativity table in Figure 2.3 to predict which bond in the following pairs is more polar and indicate the direction of bond polarity for each compound. (a) H3C-Cl or Cl-CI (b) H3C-H or H-CI (c) HO-CH3 or (CH3)3Si-CH3 (d) H3C-Li or Li-OHarrow_forward
- Organic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage Learning