
Concept explainers
(a)
Interpretation:
The number of covalent bonds that oxygen atom can form in an organic compound has to be given.
Concept Introduction:
All the atoms try to attain the octet configuration. They either gain or lose electrons, or share the electrons to get the stable octet structure. Covalent bonds are formed by mutual sharing of electrons between the atoms.
(a)

Answer to Problem 3.1EP
Oxygen can form two covalent bonds.
Explanation of Solution
Oxygen is a Group VIA element. Therefore, it has six valence electrons. All the elements try to attain the stable octet configuration either by losing, gaining or sharing the valence electrons. Oxygen is short of two electrons in order to obtain the octet configuration. Therefore, oxygen forms two bonds.
Oxygen is found to form two covalent bonds in organic compounds.
(b)
Interpretation:
The number of covalent bonds that Hydrogen atom can form in an organic compound has to be given.
Concept Introduction:
All the atoms try to attain the octet configuration. They either gain or lose electrons, or share the electrons to get the stable octet structure. Covalent bonds are formed by mutual sharing of electrons between the atoms.
(b)

Answer to Problem 3.1EP
Hydrogen can form one covalent bond.
Explanation of Solution
Hydrogen is a Group IA element. Therefore, it has only one valence electron. All the elements try to attain the stable octet configuration either by losing, gaining or sharing the valence electrons. Hydrogen is short of one electron in order to obtain the complete shell configuration. Therefore, hydrogen forms one covalent bond.
Hydrogen is found to form one covalent bond in organic compounds.
(c)
Interpretation:
The number of covalent bonds that carbon atom can form in an organic compound has to be given.
Concept Introduction:
All the atoms try to attain the octet configuration. They either gain or lose electrons, or share the electrons to get the stable octet structure. Covalent bonds are formed by mutual sharing of electrons between the atoms.
(c)

Answer to Problem 3.1EP
Carbon can form four covalent bonds.
Explanation of Solution
Carbon is a Group IVA element. Therefore, it has four valence electrons. All the elements try to attain the stable octet configuration either by losing, gaining or sharing the valence electrons. Carbon is short of four electrons in order to obtain the octet configuration. Therefore, carbon forms four covalent bonds.
Carbon is found to form four covalent bonds in organic compounds.
(d)
Interpretation:
The number of covalent bonds that halogen atom can form in an organic compound has to be given.
Concept Introduction:
All the atoms try to attain the octet configuration. They either gain or lose electrons, or share the electrons to get the stable octet structure. Covalent bonds are formed by mutual sharing of electrons between the atoms.
(d)

Answer to Problem 3.1EP
Halogen can form one covalent bond.
Explanation of Solution
Halogens are present in Group VIIA of periodic table. Therefore, it has seven valence electrons. All the elements try to attain the stable octet configuration either by losing, gaining or sharing the valence electrons. Halogens are in short of one electron in order to obtain the octet configuration. Therefore, halogens form one covalent bond.
Halogens are found to form one covalent bond in organic compounds.
Want to see more full solutions like this?
Chapter 3 Solutions
Organic And Biological Chemistry
- 1. Show the steps necessary to make 2-methyl-4-nonene using a Wittig reaction. Start with triphenylphosphine and an alkyl halide. After that you may use any other organic or inorganic reagents. 2. Write in the product of this reaction: CH3 CH₂ (C6H5)₂CuLi H₂O+arrow_forward3. Name this compound properly, including stereochemistry. H₂C H3C CH3 OH 4. Show the step(s) necessary to transform the compound on the left into the acid on the right. Bri CH2 5. Write in the product of this LiAlH4 Br H₂C OHarrow_forwardWhat are the major products of the following reaction? Please provide a detailed explanation and a drawing to show how the reaction proceeds.arrow_forward
- What are the major products of the following enolate alkylation reaction? Please include a detailed explanation as well as a drawing as to how the reaction proceeds.arrow_forwardA block of zinc has an initial temperature of 94.2 degrees celcius and is immererd in 105 g of water at 21.90 degrees celcius. At thermal equilibrium, the final temperature is 25.20 degrees celcius. What is the mass of the zinc block? Cs(Zn) = 0.390 J/gxdegrees celcius Cs(H2O) = 4.18 J/gx degrees celcusarrow_forwardPotential Energy (kJ) 1. Consider these three reactions as the elementary steps in the mechanism for a chemical reaction. AH = -950 kJ AH = 575 kJ (i) Cl₂ (g) + Pt (s) 2C1 (g) + Pt (s) Ea = 1550 kJ (ii) Cl (g)+ CO (g) + Pt (s) → CICO (g) + Pt (s) (iii) Cl (g) + CICO (g) → Cl₂CO (g) Ea = 2240 kJ Ea = 2350 kJ AH = -825 kJ 2600 2400 2200 2000 1800 1600 1400 1200 1000 a. Draw the potential energy diagram for the reaction. Label the data points for clarity. The potential energy of the reactants is 600 kJ 800 600 400 200 0 -200- -400 -600- -800- Reaction Progressarrow_forward
- Can u help me figure out the reaction mechanisms for these, idk where to even startarrow_forwardHi, I need your help with the drawing, please. I have attached the question along with my lab instructions. Please use the reaction from the lab only, as we are not allowed to use outside sources. Thank you!arrow_forwardHi, I need your help i dont know which one to draw please. I’ve attached the question along with my lab instructions. Please use the reaction from the lab only, as we are not allowed to use outside sources. Thank you!arrow_forward
- 5. Write the formation reaction of the following complex compounds from the following reactants: 6. AgNO₃ + K₂CrO₂ + NH₄OH → 7. HgNO₃ + excess KI → 8. Al(NO₃)₃ + excess NaOH →arrow_forwardIndicate whether the product formed in the reaction exhibits tautomerism. If so, draw the structure of the tautomers. CO₂C2H5 + CH3-NH-NH,arrow_forwardDraw the major product of this reaction N-(cyclohex-1-en-1-yl)-1-(pyrrolidino) reacts with CH2=CHCHO, heat, H3O+arrow_forward
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningLiving By Chemistry: First Edition TextbookChemistryISBN:9781559539418Author:Angelica StacyPublisher:MAC HIGHER



