(a)
Interpretation:
The given alcohol structures denotes a cis- or trans- isomer has to be indicated.
Concept Introduction:
A cis isomer is the one in which the same groups are present on same side of both the carbon atoms present in the double bond.
A trans isomer is the one in which the same groups are present on opposite side of both the carbon atoms present in the double bond.
Cis‑trans isomerism is not possible if any one of the carbon atom bonded to the double bond bears two identical groups.
Cis‑trans isomers are not constitutional isomers but they are stereoisomers.
Cycloalkanes can also exhibit stereoisomerism. The difference between constitutional isomerism and stereoisomerism is that, the result of difference in connectivity of carbon atoms is known as constitutional isomerism and the result of differences in configuration is known as stereoisomerism. Stereoisomers are compounds that possess same molecular formula and connectivity of atoms but different orientations of atoms in space. Cis isomers are the one where the two substituted groups on different carbon atom are present above or below the plane or the ring of carbon atoms. Trans isomers are the one where the two substituted groups on different carbon atom are present one above and one below the plane or the ring of carbon atoms.
(b)
Interpretation:
The given alcohol structures denotes a cis- or trans- isomer has to be indicated.
Concept Introduction:
Alkenes are hydrocarbons that contain at least one double bond in it. There will not be any free rotation of the double bond in alkene. Hence, cis‑trans isomerism is possible. The first and foremost condition for the alkene to exhibit cis‑trans isomerism is that the carbon attached in either end of double bond must have different groups attached to it.
A cis isomer is the one in which the same groups are present on same side of both the carbon atoms present in the double bond.
A trans isomer is the one in which the same groups are present on opposite side of both the carbon atoms present in the double bond.
Cis‑trans isomerism is not possible if any one of the carbon atom bonded to the double bond bears two identical groups.
Cis‑trans isomers are not constitutional isomers but they are stereoisomers.
Cycloalkanes can also exhibit stereoisomerism. The difference between constitutional isomerism and stereoisomerism is that, the result of difference in connectivity of carbon atoms is known as constitutional isomerism and the result of differences in configuration is known as stereoisomerism. Stereoisomers are compounds that possess same molecular formula and connectivity of atoms but different orientations of atoms in space. Cis isomers are the one where the two substituted groups on different carbon atom are present above or below the plane or the ring of carbon atoms. Trans isomers are the one where the two substituted groups on different carbon atom are present one above and one below the plane or the ring of carbon atoms.
(c)
Interpretation:
The given alcohol structures denotes a cis- or trans- isomer has to be indicated.
Concept Introduction:
Alkenes are hydrocarbons that contain at least one double bond in it. There will not be any free rotation of the double bond in alkene. Hence, cis‑trans isomerism is possible. The first and foremost condition for the alkene to exhibit cis‑trans isomerism is that the carbon attached in either end of double bond must have different groups attached to it.
A cis isomer is the one in which the same groups are present on same side of both the carbon atoms present in the double bond.
A trans isomer is the one in which the same groups are present on opposite side of both the carbon atoms present in the double bond.
Cis‑trans isomerism is not possible if any one of the carbon atom bonded to the double bond bears two identical groups.
Cis‑trans isomers are not constitutional isomers but they are stereoisomers.
Cycloalkanes can also exhibit stereoisomerism. The difference between constitutional isomerism and stereoisomerism is that, the result of difference in connectivity of carbon atoms is known as constitutional isomerism and the result of differences in configuration is known as stereoisomerism. Stereoisomers are compounds that possess same molecular formula and connectivity of atoms but different orientations of atoms in space. Cis isomers are the one where the two substituted groups on different carbon atom are present above or below the plane or the ring of carbon atoms. Trans isomers are the one where the two substituted groups on different carbon atom are present one above and one below the plane or the ring of carbon atoms.
(d)
Interpretation:
The given alcohol structures denotes a cis- or trans- isomer has to be indicated.
Concept Introduction:
Alkenes are hydrocarbons that contain at least one double bond in it. There will not be any free rotation of the double bond in alkene. Hence, cis‑trans isomerism is possible. The first and foremost condition for the alkene to exhibit cis‑trans isomerism is that the carbon attached in either end of double bond must have different groups attached to it.
A cis isomer is the one in which the same groups are present on same side of both the carbon atoms present in the double bond.
A trans isomer is the one in which the same groups are present on opposite side of both the carbon atoms present in the double bond.
Cis‑trans isomerism is not possible if any one of the carbon atom bonded to the double bond bears two identical groups.
Cis‑trans isomers are not constitutional isomers but they are stereoisomers.
Cycloalkanes can also exhibit stereoisomerism. The difference between constitutional isomerism and stereoisomerism is that, the result of difference in connectivity of carbon atoms is known as constitutional isomerism and the result of differences in configuration is known as stereoisomerism. Stereoisomers are compounds that possess same molecular formula and connectivity of atoms but different orientations of atoms in space. Cis isomers are the one where the two substituted groups on different carbon atom are present above or below the plane or the ring of carbon atoms. Trans isomers are the one where the two substituted groups on different carbon atom are present one above and one below the plane or the ring of carbon atoms.
Trending nowThis is a popular solution!
Chapter 3 Solutions
Organic And Biological Chemistry
- Please correct answer and don't used hand raiting and don't used Ai solutionarrow_forwardPlease correct answer and don't used hand raitingarrow_forwardThe vibrational contribution isa) temperature independent for internal energy and heat capacityb) temperature dependent for internal energy and heat capacityc) temperature independent for heat capacityd) temperature independent for internal energyarrow_forward
- Quantum mechanics. Explain the basis of approximating the summation to an integral in translational motion.arrow_forwardQuantum mechanics. In translational motion, the summation is replaced by an integral when evaluating the partition function. This is correct becausea) the spacing of the translational energy levels is very small compared to the product kTb) the spacing of the translational energy levels is comparable to the product kTc) the spacing of the translational energy levels is very large compared to the product kTarrow_forwardDon't used Ai solutionarrow_forward
- Please correct answer and don't used hand raiting don't used Ai solutionarrow_forwardIf the viscosity of hydrogen gas (at 0oC and 1 atm) is 8.83x10-5 P. If we assume that the molecular sizes are equal, calculate the viscosity of a gas composed of deuterium.arrow_forwardIf the viscosity of hydrogen gas (at 0oC and 1 atm) is 8.83x10-5 P. If we assume that the molecular sizes are equal, calculate the viscosity of a gas composed of deuterium.arrow_forward
- Organic And Biological ChemistryChemistryISBN:9781305081079Author:STOKER, H. Stephen (howard Stephen)Publisher:Cengage Learning,General, Organic, and Biological ChemistryChemistryISBN:9781285853918Author:H. Stephen StokerPublisher:Cengage LearningChemistry for Today: General, Organic, and Bioche...ChemistryISBN:9781305960060Author:Spencer L. Seager, Michael R. Slabaugh, Maren S. HansenPublisher:Cengage Learning
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning