Concept explainers
The “Ohm’s law” for the magnetic circuit states that the net magnetomotive force (mmf) equals the product of the core reluctance and the core flux.
(a) True
(b) False
Whether the given statement is true or false.
Answer to Problem 3.1MCQ
The given statement is true. The correct option is (a).
Explanation of Solution
Magneto-motive force is analogous to electro-motive force, magnetic flux is analogous to electric current and magnetic reluctance is analogous to electric resistance.
So ohm law for magnetic circuit can be stated as "magnetic flux produced in magnetic circuit is directly proportional to magneto-motive force".
Therefore,
Simplify above equation.
Rearrange above equation.
Here,
So net magneto-motive force equal the product of core reluctance and core flux.
Thus, the given statement is true. The correct option is (a).
Want to see more full solutions like this?
Chapter 3 Solutions
Power System Analysis and Design (MindTap Course List)
- 1. A three-phase, three-wire, 240 V, ABC system supplies a delta-connected load in which ZAB = 25/90°, ZBC = 15230° and ZCA = 200°. a) Find the line currents and the total real and reactive powers supplied by the source. Draw the phasor diagram for the line voltages and phase and line currents. Vc VA AT VB ICT 1 CA ZAB | BT ZBC b) A 240 V, 2 HP, 0.95 efficiency, single-phase motor is connected as shown below. The motor is operating at 0.85 p.f. lagging. Repeat (a). Include the motor current in the phasor diagram VA AT ZAB Ꮓ ΑΒ V B CT 1BT M ZBC ZCAarrow_forward2. A three-phase, four-wire, 208 V, ABC system supplies a Y-connected load in which Zд = 100°N, Z = 15/30° and Zc = 104-30°. Find the line currents, the neutral current and total real and reactive powers. Draw the phasor diagram of the phase voltages and currents. ZA = 3. A three-phase, three-wire, 208 V, ABC system supplies a Y-connected load in which ZA 100°, ZB = 15230° and Zc = 10-30°. Find the line currents, the phase voltages across the load impedances, the total real and reactive powers and the voltage Von VA ZAarrow_forwardDon't use ai to answer I will report you answerarrow_forward
- Discuss the importance of power-factor correction in a.c. systems. A 400 V, 50 Hz, three-phase distribution system supplies a 20 kVA, three-phase induction motor load at a power factor of 0.8 lagging, and a star-connected set of impedances, each having a resistance of 10 Ω and an inductive reactance of 8 Ω. Calculate the capacitance of delta-connected capacitors required to improve the overall power factor to 0.95 lagging. ANS: 75 µF/pharrow_forwardA 3-phase, wye-connected generator induces 2400 V in each of its windings. Calculate the line voltage.arrow_forwardwhy Low Pass filter (LPF) R₁C=S V₁ R т Tc Voarrow_forward
- Don't use ai to answer I will report you answerarrow_forwardA 60hp,3-phase motor absorbs 50 kW from a 600 V,3-phase line. If the line current is 60 A, calculate the following: a. The efficiency of the motor b. The apparent power absorbed by the motor c. The reactive power absorbed by the motor and the power factor of the motorarrow_forwardThree 15Ω resistors and three 8Ω reactors are connected as shown in Fig. 18. If the line voltage is 530 V, calculate the following: a. The active, reactive, and apparent power supplied to the 3 -phase load b. The voltage across each resistorarrow_forward
- Three resistors are connected in delta. If the line voltage is 13.2kV and the line current is 1202 A, calculate the following: A) the current in and the voltage acroos each resistor B) The power supplied to each resistor and the 3 phase load C) The ohmic value of each resistorarrow_forwardWith the aid of a phasor diagram show that the active power and power factor of a balanced three-phase load can be measured by two wattmeters. For a certain load, one wattmeter indicated 20 kW and the other 5 kW after the voltage circuit of this wattmeter had been reversed. Calculate the active power and the power factor of the load. ANS: 15 kW, 0.327arrow_forwardState the advantages to be gained by raising the power factor of industrial loads. A 400 V, 50 Hz, three-phase motor takes a line current of 15.0 A when operating at a lagging power factor of 0.65. When a capacitor bank is connected across the motor terminals, the line current is reduced to 11.5 A. Calculate the rating (in kVA) and the capa citance per phase of the capacitor bank for: (a) star connection; (b) delta connection. Find also the new overall power factor. ANS: 3.81 kvar, 70.5 µF, 23.5 µF, 0.848 laggingarrow_forward
- Power System Analysis and Design (MindTap Course ...Electrical EngineeringISBN:9781305632134Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. SarmaPublisher:Cengage Learning