Microelectronic Circuits (The Oxford Series in Electrical and Computer Engineering) 7th edition
7th Edition
ISBN: 9780199339136
Author: Adel S. Sedra, Kenneth C. Smith
Publisher: Oxford University Press
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 3, Problem 3.19P
To determine
To derive: The ratio of current is given by
Also, the value of ratio
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
SOLVE STEP BY STEP IN DIGITAL FORMAT
For each of the circuits shown below, draw its voltage transfer curve, using the
constant-drop model (all diodes are silicon identical, V_Don = 0.7V). Consider a
variation of the input voltage from -10V to +10V.
Vi
V₁
D₁
D₁
Z
D₂
1k
Circuit 1
1k
Circuit 2
V₂
+
V₂
Vi
Vi
1k
1k
D₁
Circuit 3
D₁
1k
ww
1k
Circuit 4
+
V₂
+
V₂
We know that the Si-diode will pass the current in a forward biased region. This behavior is useful for many applications.
C)Plot the V-I Characteristic Curve of the diode.
Given the following circuit with VDD = 5 V,
R = 2.6 k, then the current Iis:
Use the CVD model for the diode, with VD=
0.65 V.
V DD
I
a. 0.001673 A
O b. 0 A
O c. 1.673077 A
O d. 1.923077 A
e. 0.001923 A
R
+
VD
-
Chapter 3 Solutions
Microelectronic Circuits (The Oxford Series in Electrical and Computer Engineering) 7th edition
Ch. 3.1 - Prob. 3.1ECh. 3.2 - Prob. 3.2ECh. 3.2 - Prob. 3.3ECh. 3.3 - Prob. 3.4ECh. 3.3 - Prob. 3.5ECh. 3.3 - Prob. 3.6ECh. 3.4 - Prob. 3.7ECh. 3.4 - Prob. 3.8ECh. 3.4 - Prob. 3.9ECh. 3.5 - Prob. 3.10E
Ch. 3.5 - Prob. 3.11ECh. 3.5 - Prob. 3.12ECh. 3.5 - Prob. 3.13ECh. 3.6 - Prob. 3.14ECh. 3.6 - Prob. 3.15ECh. 3.6 - Prob. 3.16ECh. 3 - Prob. 3.1PCh. 3 - Prob. 3.2PCh. 3 - Prob. 3.3PCh. 3 - Prob. 3.4PCh. 3 - Prob. 3.5PCh. 3 - Prob. 3.6PCh. 3 - Prob. 3.7PCh. 3 - Prob. 3.8PCh. 3 - Prob. 3.9PCh. 3 - Prob. 3.10PCh. 3 - Prob. 3.11PCh. 3 - Prob. 3.12PCh. 3 - Prob. 3.13PCh. 3 - Prob. 3.14PCh. 3 - Prob. 3.15PCh. 3 - Prob. 3.16PCh. 3 - Prob. 3.17PCh. 3 - Prob. 3.18PCh. 3 - Prob. 3.19PCh. 3 - Prob. 3.20PCh. 3 - Prob. 3.21PCh. 3 - Prob. 3.22PCh. 3 - Prob. 3.23PCh. 3 - Prob. 3.24PCh. 3 - Prob. 3.25PCh. 3 - Prob. 3.26PCh. 3 - Prob. 3.27PCh. 3 - Prob. 3.28PCh. 3 - Prob. 3.29P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- i need the answer quicklyarrow_forwardAn abrupt silicon pn junction at zero bias has dopant concentrations of Nd = 1 X 1017 cm-3 cm³ and Na and N₂ = 5 X 1016 cm¯³ at T = 300K. Determine the peak electric field for this junction for a reverse voltage of 2 V. Emax = 3.88 X 105 V/cm Emax = 1.35 X 105 V/cm Emax 1.70 X 105 V/cm O Emax = 3.21 X 105 V/cm =arrow_forwardDetermine which diodes are forward-biased and which are reverse-biased in the configurations.. Assuming a 0.7-V drop across each forward-biased diode, determine the output voltage.arrow_forward
- How do you identify the anode of an unmarked diode? When the forward current of a diode increases, its forward resistance The current flowing in a reverse-biased diode circuit is extremely while the resistance of the diode is extremely The Vz of a zener diode will fairly constant even if the power supply voltage The series resistor Rs is used with the zener diode to the zener current Iz to a level.arrow_forwardIn the circuit shown below. Let Vm-35 V and i-20 mA and VpQ -0.7 V: iD 3 kQ 0.8 kO Vmcos(@t)V For t Os, the current in the diode equals: Oa. 0 mA Ob. 4 mA Oc. 2 mA Od. 6 mA If t = T/4, then the current in the diode equals: Oa. 6.29 mA Ob. 5.03 mA Oc. 4,03 mA Od. 7.86 mA If t = T/2, then the current in the diode equals: Oa. 15.24 mA Ob. 13.24 mA Oc. 19.24 mA Od. 17.24 mAarrow_forwardFor the following circuit: Find the current that goes through each diode. What's the value of Vo? Invert polarity of the 5V source and obtain the following: Find the current that goes through each diode. What's the value of Vo? V1 -5V H D1 1N4001 R2 >1kQ 11 D2 1N4001 R1 2kQ ww R3 1kQ Vo Use simplified modelarrow_forward
- Not Gradedarrow_forwardIn the case of pn junction of the same material, the internal potential Vbi increases as more doping is performed in each of the p and n regions. Explain this by drawing an energy band diagram.arrow_forwardA simple p*n junction is designed to work as IMPATT diode. The doping concentrations in the p* layer is 1019 cm-3 while the doping in the n-layer is 0.7 x1016 Calculate the peak electric field if the breakdown voltage is 80 V and the dielectric constant is 11.9. Express your answer in the unit of kV/cm. cm-3arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Introductory Circuit Analysis (13th Edition)Electrical EngineeringISBN:9780133923605Author:Robert L. BoylestadPublisher:PEARSONDelmar's Standard Textbook Of ElectricityElectrical EngineeringISBN:9781337900348Author:Stephen L. HermanPublisher:Cengage LearningProgrammable Logic ControllersElectrical EngineeringISBN:9780073373843Author:Frank D. PetruzellaPublisher:McGraw-Hill Education
- Fundamentals of Electric CircuitsElectrical EngineeringISBN:9780078028229Author:Charles K Alexander, Matthew SadikuPublisher:McGraw-Hill EducationElectric Circuits. (11th Edition)Electrical EngineeringISBN:9780134746968Author:James W. Nilsson, Susan RiedelPublisher:PEARSONEngineering ElectromagneticsElectrical EngineeringISBN:9780078028151Author:Hayt, William H. (william Hart), Jr, BUCK, John A.Publisher:Mcgraw-hill Education,
Introductory Circuit Analysis (13th Edition)
Electrical Engineering
ISBN:9780133923605
Author:Robert L. Boylestad
Publisher:PEARSON
Delmar's Standard Textbook Of Electricity
Electrical Engineering
ISBN:9781337900348
Author:Stephen L. Herman
Publisher:Cengage Learning
Programmable Logic Controllers
Electrical Engineering
ISBN:9780073373843
Author:Frank D. Petruzella
Publisher:McGraw-Hill Education
Fundamentals of Electric Circuits
Electrical Engineering
ISBN:9780078028229
Author:Charles K Alexander, Matthew Sadiku
Publisher:McGraw-Hill Education
Electric Circuits. (11th Edition)
Electrical Engineering
ISBN:9780134746968
Author:James W. Nilsson, Susan Riedel
Publisher:PEARSON
Engineering Electromagnetics
Electrical Engineering
ISBN:9780078028151
Author:Hayt, William H. (william Hart), Jr, BUCK, John A.
Publisher:Mcgraw-hill Education,
Diodes Explained - The basics how diodes work working principle pn junction; Author: The Engineering Mindset;https://www.youtube.com/watch?v=Fwj_d3uO5g8;License: Standard Youtube License