Before the element scandium was discovered in 1879, it was known as “eka-boron.” Predict the properties of scandium from averages of the corresponding properties of its neighboring elements in the periodic table. Compare your predictions with the observed values in Appendix F.
Interpretation:
The properties of scandium should be determined from the averages of the properties of neighbouring elements in the periodic table and predictions should be compared with the observed values in Appendix F.
Concept introduction:
The periodic table contains periods and groups. There are 18 groups and 7 periods in the periodic table. The vertical columns are known as groups and horizontal rows are known as periods.
The numbering of periods is done as 1 to 7 from top to bottom and groups are named as 1A, 2A, 3B to 8B, 1B, 2B, 3A to 8A from left to right where A represents representative elements and B represents transition elements. Elements in the same family have similar chemical and physical properties. In the periodic table, elements are classified as metals, non-metals or metalloids.
Answer to Problem 1P
Calculated values of Scandium are:
Melting point = 1250oC
Boiling point = 2386oC
Density = 3.02 g/cm3
The observed values and calculated values are nearer.
Explanation of Solution
Given information:
Scandium belongs to group 3 and period 4.The electronic configuration of scandium is:
Melting point is calculated as =
= 1249.5oC
Boiling point is calculated as =
= 2386oC
Density is calculated as =
=
Now, from Appendix F:
Melting point of scandium = 1541oC
Boiling point of scandium = 2386oC
Density of scandium = 2.99 g/cm3
According to the calculated value and observed values, the physical properties are nearer but not exactly the same.
Want to see more full solutions like this?
Chapter 3 Solutions
Principles of Modern Chemistry
- Look in Appendix D and compare the electron configurations shown there with the fusion enthalpies for the metals shown in Table 9.7. Is there any correlation between these configurations and this property? Does strength of attraction among metal atoms correlate with number of valence electrons? Explain your answers.arrow_forwardExplain how periodic trends in ionization energy and electron affinity explain why atoms of elements in Group I andGroup II tend to bond with other elements by forming positive ions in ionic compounds. Explain with electronconfiguration of elements belonging to Group I and Group II.arrow_forwardWhat are the compouds formed by the elements of Group VIIA and VIIB?arrow_forward
- The element E reacts with F to form an ionic compound EF. The element forms a solid ionic hydride while the hydride of F is gaseous at room temperature. To what group in the periodic table could E and F belong? Give reasons for your answerarrow_forwardExplain the horizontal irregularity in size of the most com-mon ions of Period 3 elements.arrow_forwardPlease solve all questions, including the subparts. What trend in first ionization energy occurs as you go up a group on the periodic table? Explain why this occurs. What trend in atomic radius occurs as you go up a group on the periodic table? Explain why this occurs. Arrange the following in order of increasing electronegativity: Br, F, I, Cl Write four quantum numbers to describe the highest energy electron in the magnesium atom. Be sure to include the four symbols and four correct numbers. Arrange the following in order of increasing first ionization energy: Br, F, I, Clarrow_forward
- Write the electron configuration for xenon. B I UE E T Σarrow_forward2arrow_forwardGiven: Enthalpy of atomisation of calcium =+ 178 kJ First ionisation energy of calcium =+590 kJ Second ionisation energy of calcium = +1145 kJ Enthalpy of atomisation of chlorine =+ 121 kJ Electron affinity of chlorine Lattice energy of calcium chloride =- 2258 kJ = - 346 kJ Construct a Born-Haber cycle for calcium chloride, CaCl2 by using the data given above. Hence, calculate the enthalpy of formation of calcium chloride. b. The enthalpy of solution for calcium chloride crystal is -81.3 kJ mol'. Based on the data from the above Born-Haber cycle, calculate the enthalpy change for the reaction below: Ca" (g) + 2CI (g)–→ Ca* (aq) + 2CI¯ (aq)arrow_forward
- 4What causes the changes in ionic radius from left to right across period 2 of the periodic table.arrow_forwardMendeleev’s 1871 periodic table included oxide formation as an organizing feature. The ratio in which an element will combine with oxygen is related to the ions that the element commonly forms. For example, lithium forms the Li+ ion easily (because it has a low first ionization energy, but high second ionization energy). Oxygen forms O-2 ions easily (because it has a high electron affinity for two electrons). Thus, Li+ and O-2 combine to form Li2O to become a neutral molecule. Based on this reasoning, which of the following would be the formula for magnesium oxide? Mg2O2 MgO MgO2 Mg2Oarrow_forwardHow does the structure of a lithium ion vary from that of a lithium atom?arrow_forward
- Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning