Concept explainers
GO Figure 27-27 shows a circuit of four resistors that are connected to a larger circuit. The graph below the circuit shows the electric potential V(x) as a function of position x along the lower branch of the circuit, through resistor 4; the potential VA is 12.0 V. The graph above the circuit shows the electric potential V(x) versus position x along the upper branch of the circuit, through resistors 1, 2, and 3; the potential differences are ▵VB = 2.00 V and ▵VC = 5.00 V. Resistor 3 has a resistance of 200 Ω. What is the resistance of (a) resistor 1 and (b) resistor 2?
Figure 27-27 Problem 4.
Want to see the full answer?
Check out a sample textbook solutionChapter 27 Solutions
Fundamentals of Physics Extended
Additional Science Textbook Solutions
Microbiology: Principles and Explorations
Microbiology with Diseases by Body System (5th Edition)
Principles of Anatomy and Physiology
Microbiology: An Introduction
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
College Physics: A Strategic Approach (3rd Edition)
- Consider the circuit shown in Figure P26.24, where C1, = 6.00 F, C2 = 3.00 F. and V = 20.0 V. Capacitor C1 is first charged by closing switch S1. Switch S1 is then opened, and the charged capacitor is connected to the uncharged capacitor by closing Calculate (a) the initial charge acquired by C, and (b) the final charge on each capacitor.arrow_forwardA pair of capacitors with capacitances CA = 3.70 F and CB = 6.40 F are connected in a network. What is the equivalent capacitance of the pair of capacitors if they are connected a. in parallel and b. in series?arrow_forwardA charge Q is placed on a capacitor of capacitance C. The capacitor is connected into the circuit shown in Figure P26.37, with an open switch, a resistor, and an initially uncharged capacitor of capacitance 3C. The switch is then closed, and the circuit comes to equilibrium. In terms of Q and C, find (a) the final potential difference between the plates of each capacitor, (b) the charge on each capacitor, and (c) the final energy stored in each capacitor. (d) Find the internal energy appearing in the resistor. Figure P26.37arrow_forward
- A Pairs of parallel wires or coaxial cables are two conductors separated by an insulator, so they have a capacitance. For a given cable, the capacitance is independent of the length if the cable is very long. A typical circuit model of a cable is shown in Figure P27.87. It is called a lumped-parameter model and represents how a unit length of the cable behaves. Find the equivalent capacitance of a. one unit length (Fig. P27.87A), b. two unit lengths (Fig. P27.87B), and c. an infinite number of unit lengths (Fig. P27.87C). Hint: For the infinite number of units, adding one more unit at the beginning does not change the equivalent capacitance.arrow_forwardAssume a length of axon membrane of about 0.10 m is excited by an action potential (length excited = nerve speed pulse duration = 50.0 m/s 2.0 103 s = 0.10 m). In the resting state, the outer surface of the axon wall is charged positively with K+ ions and the inner wall has an equal and opposite charge of negative organic ions, as shown in Figure P18.43. Model the axon as a parallel-plate capacitor and take C = 0A/d and Q = C V to investigate the charge as follows. Use typical values for a cylindrical axon of cell wall thickness d = 1.0 108 m, axon radius r = 1.0 101 m, and cell-wall dielectric constant = 3.0. (a) Calculate the positive charge on the outside of a 0.10-m piece of axon when it is not conducting an electric pulse. How many K+ ions are on the outside of the axon assuming an initial potential difference of 7.0 102 V? Is this a large charge per unit area? Hint: Calculate the charge per unit area in terms of electronic charge e per squared (2). An atom has a cross section of about 1 2 (1 = 1010 m). (b) How much positive charge must flow through the cell membrane to reach the excited state of + 3.0 102 V from the resting state of 7.0 102 V? How many sodium ions (Na+) is this? (c) If it takes 2.0 ms for the Na+ ions to enter the axon, what is the average current in the axon wall in this process? (d) How much energy does it take to raise the potential of the inner axon wall to + 3.0 102 V, starting from the resting potential of 7.0 102 V? Figure P18.43 Problem 43 and 44.arrow_forwardIf three unequal capacitors, initially uncharged, are connected in series across a battery, which of the following statements is true? (a) The equivalent capacitance is greater than any of the individual capacitances, (b) The largest voltage appeal's across the smallest capacitance, (c) The largest voltage appears across the largest capacitance. (d) The capacitor with the largest capacitance has the greatest charge, (e) The capacitor with the smallest capacitance has the smallest charge.arrow_forward
- A large parallel-plate capacitor is attached to a battery that has terminal potential (Fig. 27.15A). After a period of time, the capacitor stores charge Q so that its top plate is positive and its bottom plate is negative, and the potential difference between the plates is VC = . An I-shaped neutral conductor consisting of two parallel plates connected by a wire is slipped between the plates of the capacitor so that all four plates are parallel (Fig. 27.15B). What are the charges q1, and q2 on the plates of the I-shaped conductor? What is the potential difference VC between the top and bottom plates of the capacitor?arrow_forwardAn arrangement of capacitors is shown in Figure P27.23. a. If C = 9.70 105 F, what is the equivalent capacitance between points a and b? b. A battery with a potential difference of 12.00 V is connected to a capacitor with the equivalent capacitance. What is the energy stored by this capacitor? Figure P27.23 Problems 23 and 24.arrow_forwardA 10.0-F capacitor is charged to 15.0 V. It is next connected in series with an uncharged 5.00-F capacitor. The series combination is finally connected across a 50.0-V battery as diagrammed in Figure P26.63. Find the new potential differences across the 5.00-F and 10.0-F capacitors after the switch is thrown closed.arrow_forward
- In a certain region of space, the electric field is zero. From this fact, what can you conclude about the electric potential in this region? (a) It is zero, (b) It does not vary with position. (c) It is positive. (d) It is negative. (e) None of those answers is necessarily true.arrow_forwardGiven the arrangement of capacitors in Figure P27.23, find an expression for the equivalent capacitance between points a and b. Figure P27.23 Problems 23 and 24.arrow_forwardFind the equivalent capacitance between points a and b in the combination of capacitors shown in Figure P20.51. Figure P20.51arrow_forward
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning