Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 27, Problem 2P
In Fig. 27-26, the ideal batteries have emfs ℰ1 = 150 V and ℰ2 = 50 V and the resistances are R1 = 3.0 Ω and R2 = 2.0 Ω. If the potential at P is 100 V, what is it at Q?
Figure 27-26 Problem 2.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
14 O In Fig. 27-32a, both batteries have emf & = 1.20 V and the
external resistance R is a variable resistor. Figure 27-32b gives the
electric potentials V between the terminals of each battery as func-
tions of R: Curve 1 corresponds to battery 1, and curve 2 corre-
sponds to battery 2. The horizontal scale is set by R, = 0.20 2. What
is the internal resistance of (a) battery 1 and (b) battery 2?
0.5
-0.3
R (2)
(a)
(6)
(A)A
please solve asap and in detail
Q (C)
capacitor P
kapasitor P
0.63 Q.
0.37 Q.
2 uF
3 µF
37 80
5 uF
(a)
(b)
FIGURE 2
RAJAH 2
The graph in FIGURE 2(a) shows how the charge, Q on a capacitor P
changes with time, I when it is charged through a 20 Q resistor. Determine the
capacitance of capacitor P.
(a)
Graf dalam RAJAH 2(a) menunjukkan bagaimana cas, Q pada satu kapasitor
P berubah dengan masa, t apabila ia dicas melalui satu perintang 20 2.
Tentukan kapasitans bagi kapasitor P.
(b)
Capacitor P is then arranged as shown in FIGURE 2(b). Determine the
effective capacitance.
Kapasitor P kemudian disusun seperti RAJAH 2(b). Tentukan kapasitans
berkesan.
2.
Chapter 27 Solutions
Fundamentals of Physics Extended
Ch. 27 - a In Fig. 27-18a, with R1R2, is the potential...Ch. 27 - a In Fig. 27-18a, are resistors R1 and R3 in...Ch. 27 - You are to connect resistors R1 and R2, with R1R2,...Ch. 27 - In Fig. 27-19, a circuit consists of a battery and...Ch. 27 - For each circuit in Fig 27-20, are the resistors...Ch. 27 - Res-monster maze. In Fig. 27-21, all the resistors...Ch. 27 - A resistor R1 is wired to a battery, then resistor...Ch. 27 - What is the equivalent resistance of three...Ch. 27 - Two resistors are wired to a battery. a In which...Ch. 27 - Cap-monster maze. In Fig. 27-22, all the...
Ch. 27 - Initially, a single resistor, R1 is wired to a...Ch. 27 - After the switch in Fig. 27-15 is closed on point...Ch. 27 - Figure 27-24 shows three sections of circuit that...Ch. 27 - SSM WWW In Fig. 27-25, the ideal batteries have...Ch. 27 - In Fig. 27-26, the ideal batteries have emfs 1 =...Ch. 27 - ILW A car battery with a 12 V emf and an internal...Ch. 27 - GO Figure 27-27 shows a circuit of four resistors...Ch. 27 - A 5.0 A current is set up in a circuit for 6.0 min...Ch. 27 - A standard flashlight battery can deliver about...Ch. 27 - A wire of resistance 5.0 is connected to a...Ch. 27 - A certain car battery with a 12.0 V emf has an...Ch. 27 - a In electron-volts, how much work does an ideal...Ch. 27 - a In Fig. 27-28, what value must R have if the...Ch. 27 - SSM In Fig. 27-29, circuit section AB absorbs...Ch. 27 - Figure 27-30 shows a resistor of resistance R =...Ch. 27 - A 10-km-long underground cable extends east to...Ch. 27 - GO In Fig. 27-32a, both batteries have emf = 1.20...Ch. 27 - ILW The current in a single-loop circuit with one...Ch. 27 - A solar cell generates a potential difference of...Ch. 27 - SSM In Fig. 27-33, battery 1 has emf 1 = 12.0 V...Ch. 27 - In Fig. 27-9, what is the potential difference Vd ...Ch. 27 - A total resistance of 3.00 is to be produced by...Ch. 27 - When resistors 1 and 2 are connected in series,...Ch. 27 - Prob. 21PCh. 27 - Figure 27-34 shows five 5.00 resistors. Find the...Ch. 27 - In Fig. 27-35, R1 = 100 , R2 = 50 , and the ideal...Ch. 27 - In Fig. 27-36, R1 = R2 = 4.00 and R3 = 2.50 ....Ch. 27 - SSM Nine copper wires of length l and diameter d...Ch. 27 - Figure 27-37 shows a battery connected across a...Ch. 27 - Side flash. Figure 27-38 indicates one reason no...Ch. 27 - The ideal battery in Fig. 27-39a has emf = 6.0 V....Ch. 27 - In Fig. 27-40, R1 = 6.00 , R2 = 18.0 , and the...Ch. 27 - GO In Fig. 27-41, the ideal batteries have emfs 1...Ch. 27 - SSMGO In Fig. 27-42, the ideal batteries have emfs...Ch. 27 - Both batteries in Fig. 27-43a are ideal. Emf 1 of...Ch. 27 - GO In Fig. 27-44. the current in resistance 6 is...Ch. 27 - The resistances in Figs. 27-45a and b are all 6.0...Ch. 27 - GO In Fig. 27-46, = 12.0 V, R1, = 2000 , R2 =...Ch. 27 - GO In Fig. 27-47, 1 = 6.00 V, 2 = 12.0 V, R1, =...Ch. 27 - In Fig. 27-48, the resistances are R1 = 2.00 , R2...Ch. 27 - Figure 27-49 shows a section of a circuit. The...Ch. 27 - GO In Fig. 27-50, two batteries with an emf =...Ch. 27 - GO Two identical batteries of emf = 12.0 V and...Ch. 27 - In Fig. 27-41, 1 = 3.00 V, 2 = 1.00 V, R1 = 4.00 ,...Ch. 27 - In Fig. 27-52, an array of n parallel resistors is...Ch. 27 - You are given a number of 10 resistors, each...Ch. 27 - GO In Fig. 27-53, R1 = 100 , R2 = R3 = 50.0 , R4 =...Ch. 27 - ILW In Fig. 27-54, the resistances are R1 = 1.0 ...Ch. 27 - In Fig. 27-55a, resistor 3 is a variable resistor...Ch. 27 - SSM A copper wire of radius a = 0.250 mm has an...Ch. 27 - GO In Fig. 27-53, the resistors have the values R1...Ch. 27 - ILW a In Fig. 27-56, what current does the ammeter...Ch. 27 - In Fig. 27-57, R1 = 2.00R, the ammeter resistance...Ch. 27 - In Fig. 27-58, a voltmeter of resistance Rv= 300 ...Ch. 27 - A simple ohmmeter is made by connecting a 1.50V...Ch. 27 - In Fig. 27-14, assume that = 3.0 V, r = 100 , R1 =...Ch. 27 - When the lights of a car are switched on, an...Ch. 27 - In Fig. 27-61, Rsis to be adjusted in value by...Ch. 27 - In Fig. 27-62. a voltmeter of resistance Rv = 300 ...Ch. 27 - Switch S in Fig. 27-63 is closed at time t = 0, to...Ch. 27 - In an RC series circuit, emf = 12.0 V, resistance...Ch. 27 - SSM What multiple of the time constant gives the...Ch. 27 - A capacitor with initial charge q0 is discharge...Ch. 27 - ILW A 15.0 k resistor and a capacitor are...Ch. 27 - Figure 27-64 shows the circuit of a flashing lamp,...Ch. 27 - SSM WWWIn the circuit of Fig. 27-65, = 1.2 kV, C=...Ch. 27 - A capacitor with an initial potential difference...Ch. 27 - GO In Fig. 27-66. R1 = 10.0 k, R2 = 15.0 k, C=...Ch. 27 - Figure 27-67 display two circuits with a charged...Ch. 27 - The potential difference between the plates of a...Ch. 27 - A 1.0 F capacitor with an initial stored energy of...Ch. 27 - GO A 3.00 M resistor and a 1.00 F capacitor are...Ch. 27 - GO Each of the six real batteries in Fig. 27-68...Ch. 27 - In Fig. 27-69, R1 = 20.0 , R2 = 10.0 , and the...Ch. 27 - In Fig.27-70, the ideal battery has emf = 30.0 V,...Ch. 27 - SSM Wires A and B, having equal lengths of 40.0 m...Ch. 27 - What are the a size and b direction up or down of...Ch. 27 - Suppose that, while you are sitting in a chair,...Ch. 27 - GO In Fig. 27-72, the ideal batteries have emfs 1...Ch. 27 - SSM A temperature-stable resistor is made by...Ch. 27 - In Fig. 27-14, assume that = 5.0 V, r = 2.0 , R1...Ch. 27 - SSM An initially uncharged capacitor C is fully...Ch. 27 - In Fig. 27-73, R1 = 5.00 , R2 = 10.0 , R3 = 15.0 ,...Ch. 27 - In Fig. 27-5a, find the potential difference...Ch. 27 - In Fig. 27-8a, calculate the potential difference...Ch. 27 - SSM A controller on an electronic arcade game...Ch. 27 - An automobile gasoline gauge is shown...Ch. 27 - SSM The starting motor of a car is turning too...Ch. 27 - Two resistors R1 and R2 may be connected either in...Ch. 27 - The circuit of Fig. 27-25 shows a capacitor, two...Ch. 27 - In Fig. 27-41, R1 = 10.0 , R2 = 20.0 , and the...Ch. 27 - In Fig. 27-76, R= 10 . what is the equivalent...Ch. 27 - a In Fig. 27-4a, show that the rate at which...Ch. 27 - In Fig. 27-77, the ideal batteries have emfs 1 =...Ch. 27 - Figure 27-28 shows a portion of a circuit through...Ch. 27 - Thermal energy is to be generated in a 0.10 ...Ch. 27 - Figure 27-29 shows three 20.0 resistors. Find the...Ch. 27 - A 120 V power line is protected by a 15 A fuse....Ch. 27 - Figure 27-63 shows an ideal battery of emf = 12...Ch. 27 - SSM A group of N identical batteries of emf and...Ch. 27 - SSM In Fig. 27-48, R1 = R2 = 10.0 , and the ideal...Ch. 27 - SSM In Fig. 27-66, the ideal battery has emf = 30...Ch. 27 - In Fig. 27-81, the ideal batteries have emfs 1 =...Ch. 27 - In Fig. 27-82, an ideal battery of emf = 12.0 V...Ch. 27 - The following table gives the electric potential...Ch. 27 - In Fig. 27-83, 1 = 6.00 V, 2 = 12.0 V, R1= 200 ...Ch. 27 - A three-way 120 V lamp bulb that contains two...Ch. 27 - In Fig. 27-84, R1 = R2 = 2.0 , R3 = 4.0 , R4 = 3.0...
Additional Science Textbook Solutions
Find more solutions based on key concepts
An elevator suspended by a cable is descending at constant velocity. How many force vector would be shown on ...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Acetobacter is necessary for only one of the steps of vitamin C manufacture. The easiest way to accomplish this...
Microbiology: An Introduction
22.45
The NMR data for the two anomers included very comparable peaks in the 2.0–5.6 region but differed ...
Organic Chemistry
Whether the mass of a nickel strip will change after copper plating or not must be explained. Concept introduct...
Living By Chemistry: First Edition Textbook
1. Why is the quantum-mechanical model of the atom important for understanding chemistry?
Chemistry: Structure and Properties (2nd Edition)
29. For a demonstration, a professor uses a razor blade to cut a thin slit in a piece of aluminum foil. When sh...
College Physics: A Strategic Approach (3rd Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In the figure the ideal batteries have emfs E; = 4.89 V and E = 10.2 V, the resistances are each 2.41 Q, and the potential is defined to be zero at the grounded point of the circuit. What are potentials (a)V, and (b)V2 at the indicated points? R R Z R, R R3 (a) Number Units (b) Number i Units Varrow_forwardCylindrical-conductors has inner and outer radii of 2 mm and 75 mm, respectively. If V(ρ = 2 mm) = 150 V and V(ρ = 75 mm) = 0 V, εr = 10, dielectric conductivity 5×10-4 s/m, the dielectric resistance equals to?arrow_forwardIn the figure the ideal batteries have emfs E, = 5.25 V and E2 = 13 V, the resistances are each 2.02 Q, and the potential is defined to be zero at the grounded point of the circuit. What are potentials (a)V1 and (b)V2 at the indicated points? R, R 3 R, R (a) Number i Units (b) Number i Units R.arrow_forward
- In the figure the ideal batteries have emfs ε1 = 150 V and ε2 = 50 V and the resistances are R1 = 3.0 Ω and R2 = 2.0 Ω. If the potential at P is defined to be 110 V, what is the potential at Q?arrow_forwardIn the figure ₁ = 2.40 V, 2 = 0.821 V, R₁ = 4.260, R₂ = 2.67 0, R3 = 4.99 Q, and both batteries are ideal. What is the rate at which energy is dissipated in (a) R₁, (b) R₂, and (c) R3? What is the power of (d) battery 1 and (e) battery 2? www R₁ 18₁ R₂ R₂8₂ (a) Number (b) Number (c) Number (d) Number (e) Number i i Units Units Units Units Unitsarrow_forwardA1arrow_forward
- In the figure &1 = 4.28 V, Ɛ2 = 1.39 V, R1 = 6.91 Q, R2 = 2.95 Q, R3 = 4.30 Q, and both batteries are ideal. What is the rate at which energy is dissipated in (a) R1. (b) R2, and (c) R3? What is the power of (d) battery 1 and (e) battery 2? ww R2 R1 +18, E, (a) Number i Units (b) Number i Units (c) Number i Units (d) Number i Units (e) Number i Units > > > >arrow_forwardThe space between two conducting concentric spheres of radii a and b (a < b) is filled up with a homogeneous poorly conducting medium. The capacitance of such a system equals C. Find the resistivity of the medium if the potential difference between the spheres when they are disconnected from an external voltage, decreases-fold during the time interval Δt.arrow_forwardCylindrical-conductors has inner and outer radii of 2 mm and 50 mm, respectively. If V(p = 2 mm) = 150 V and V(p = 50 mm) = 0 V, &r 10, dielectric conductivity 5x10-4 s/m, the dielectric resistance equals to 803.96 2 1024.59 2 1153.66 Q 1245.23 2arrow_forward
- In Figure 27-40, the resistances are R₁ = 1.20 2, R2 = 1.80 2, and the ideal batteries have emfs 1 = 2.0 V, and 2 = E3 = 5.0 V. R₁ R₁ a R₂ જ્જ R₁ 182 R₁ (a) What is the current through each battery? (Take upward to be positive.) battery 1 battery 2 battery 3 (b) What is the potential difference Va - Vb? Fig. 27-40arrow_forwardA capacitor with initial charge q0 is discharged through a resistor. What multiple of the time constant τ gives the time the capacitor takes to lose (a) the first 1/5-th of its charge and (b)4/5-th of its charge?arrow_forwardIn the figure the ideal batteries have emfs E1 = 4.89 V and E2 = 10.2 V, the resistances are each 2.41 Q, and the potential is defined to be zero at the grounded point of the circuit. What are potentials (a)V1 and (b)V2 at the indicated points? R, R R; R3 Varrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Ohm's law Explained; Author: ALL ABOUT ELECTRONICS;https://www.youtube.com/watch?v=PV8CMZZKrB4;License: Standard YouTube License, CC-BY