Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 27, Problem 72P
In Fig.27-70, the ideal battery has emf ℰ = 30.0 V, and the resistances are R1 = R2 = 14 Ω, R3 = R4 = R5 = 6.0 Ω, R6 = 2.0 Ω, and R7 =1.5 Ω. What are currents (a) i2, (b) i4, (c) i1, (d) i3, and (e)i5?
Figure 27-70 Problem 72.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In the figure the ideal battery has emf = 31.7 V, and the resistances are R1 = R2 = 41 Ω, R3 = R4 = R5 = 8.2 Ω, R6 = 5.4 Ω, and R7 = 4.8 Ω. What are currents (a)i2, (b)i4, (c)i1, (d)i3, and (e)i5?
In the figure the ideal battery has emf = 32.6 V, and the resistances are R₁ = R₂ = 2102, R3 = R4 R5 = 9.10, R6 = 3.30, and R7 = 1.8 0.
What are currents (a)i2, (b)i4, (c)i₁1, (d)i3, and (e)i5?
R₁
Rs
R₂
R4
12
R₂
R₂
R6
25
In the figure & = 2.63 V, 82 = 0.933 V, R1 = 5.96 N, R2 = 2.98 0, R3 = 3.85 N, and both batteries are ideal. What is the rate at which
energy is dissipated in (a) R1, (b) R2, and (c) R3? What is the power of (d) battery 1 and (e) battery 2?
ww
R
+18,
(a) Number
i
Units
(b) Number
i
Units
(c) Number
Units
(d) Number
i
Units
(e) Number
Units
>
>
>
>
>
Chapter 27 Solutions
Fundamentals of Physics Extended
Ch. 27 - a In Fig. 27-18a, with R1R2, is the potential...Ch. 27 - a In Fig. 27-18a, are resistors R1 and R3 in...Ch. 27 - You are to connect resistors R1 and R2, with R1R2,...Ch. 27 - In Fig. 27-19, a circuit consists of a battery and...Ch. 27 - For each circuit in Fig 27-20, are the resistors...Ch. 27 - Res-monster maze. In Fig. 27-21, all the resistors...Ch. 27 - A resistor R1 is wired to a battery, then resistor...Ch. 27 - What is the equivalent resistance of three...Ch. 27 - Two resistors are wired to a battery. a In which...Ch. 27 - Cap-monster maze. In Fig. 27-22, all the...
Ch. 27 - Initially, a single resistor, R1 is wired to a...Ch. 27 - After the switch in Fig. 27-15 is closed on point...Ch. 27 - Figure 27-24 shows three sections of circuit that...Ch. 27 - SSM WWW In Fig. 27-25, the ideal batteries have...Ch. 27 - In Fig. 27-26, the ideal batteries have emfs 1 =...Ch. 27 - ILW A car battery with a 12 V emf and an internal...Ch. 27 - GO Figure 27-27 shows a circuit of four resistors...Ch. 27 - A 5.0 A current is set up in a circuit for 6.0 min...Ch. 27 - A standard flashlight battery can deliver about...Ch. 27 - A wire of resistance 5.0 is connected to a...Ch. 27 - A certain car battery with a 12.0 V emf has an...Ch. 27 - a In electron-volts, how much work does an ideal...Ch. 27 - a In Fig. 27-28, what value must R have if the...Ch. 27 - SSM In Fig. 27-29, circuit section AB absorbs...Ch. 27 - Figure 27-30 shows a resistor of resistance R =...Ch. 27 - A 10-km-long underground cable extends east to...Ch. 27 - GO In Fig. 27-32a, both batteries have emf = 1.20...Ch. 27 - ILW The current in a single-loop circuit with one...Ch. 27 - A solar cell generates a potential difference of...Ch. 27 - SSM In Fig. 27-33, battery 1 has emf 1 = 12.0 V...Ch. 27 - In Fig. 27-9, what is the potential difference Vd ...Ch. 27 - A total resistance of 3.00 is to be produced by...Ch. 27 - When resistors 1 and 2 are connected in series,...Ch. 27 - Prob. 21PCh. 27 - Figure 27-34 shows five 5.00 resistors. Find the...Ch. 27 - In Fig. 27-35, R1 = 100 , R2 = 50 , and the ideal...Ch. 27 - In Fig. 27-36, R1 = R2 = 4.00 and R3 = 2.50 ....Ch. 27 - SSM Nine copper wires of length l and diameter d...Ch. 27 - Figure 27-37 shows a battery connected across a...Ch. 27 - Side flash. Figure 27-38 indicates one reason no...Ch. 27 - The ideal battery in Fig. 27-39a has emf = 6.0 V....Ch. 27 - In Fig. 27-40, R1 = 6.00 , R2 = 18.0 , and the...Ch. 27 - GO In Fig. 27-41, the ideal batteries have emfs 1...Ch. 27 - SSMGO In Fig. 27-42, the ideal batteries have emfs...Ch. 27 - Both batteries in Fig. 27-43a are ideal. Emf 1 of...Ch. 27 - GO In Fig. 27-44. the current in resistance 6 is...Ch. 27 - The resistances in Figs. 27-45a and b are all 6.0...Ch. 27 - GO In Fig. 27-46, = 12.0 V, R1, = 2000 , R2 =...Ch. 27 - GO In Fig. 27-47, 1 = 6.00 V, 2 = 12.0 V, R1, =...Ch. 27 - In Fig. 27-48, the resistances are R1 = 2.00 , R2...Ch. 27 - Figure 27-49 shows a section of a circuit. The...Ch. 27 - GO In Fig. 27-50, two batteries with an emf =...Ch. 27 - GO Two identical batteries of emf = 12.0 V and...Ch. 27 - In Fig. 27-41, 1 = 3.00 V, 2 = 1.00 V, R1 = 4.00 ,...Ch. 27 - In Fig. 27-52, an array of n parallel resistors is...Ch. 27 - You are given a number of 10 resistors, each...Ch. 27 - GO In Fig. 27-53, R1 = 100 , R2 = R3 = 50.0 , R4 =...Ch. 27 - ILW In Fig. 27-54, the resistances are R1 = 1.0 ...Ch. 27 - In Fig. 27-55a, resistor 3 is a variable resistor...Ch. 27 - SSM A copper wire of radius a = 0.250 mm has an...Ch. 27 - GO In Fig. 27-53, the resistors have the values R1...Ch. 27 - ILW a In Fig. 27-56, what current does the ammeter...Ch. 27 - In Fig. 27-57, R1 = 2.00R, the ammeter resistance...Ch. 27 - In Fig. 27-58, a voltmeter of resistance Rv= 300 ...Ch. 27 - A simple ohmmeter is made by connecting a 1.50V...Ch. 27 - In Fig. 27-14, assume that = 3.0 V, r = 100 , R1 =...Ch. 27 - When the lights of a car are switched on, an...Ch. 27 - In Fig. 27-61, Rsis to be adjusted in value by...Ch. 27 - In Fig. 27-62. a voltmeter of resistance Rv = 300 ...Ch. 27 - Switch S in Fig. 27-63 is closed at time t = 0, to...Ch. 27 - In an RC series circuit, emf = 12.0 V, resistance...Ch. 27 - SSM What multiple of the time constant gives the...Ch. 27 - A capacitor with initial charge q0 is discharge...Ch. 27 - ILW A 15.0 k resistor and a capacitor are...Ch. 27 - Figure 27-64 shows the circuit of a flashing lamp,...Ch. 27 - SSM WWWIn the circuit of Fig. 27-65, = 1.2 kV, C=...Ch. 27 - A capacitor with an initial potential difference...Ch. 27 - GO In Fig. 27-66. R1 = 10.0 k, R2 = 15.0 k, C=...Ch. 27 - Figure 27-67 display two circuits with a charged...Ch. 27 - The potential difference between the plates of a...Ch. 27 - A 1.0 F capacitor with an initial stored energy of...Ch. 27 - GO A 3.00 M resistor and a 1.00 F capacitor are...Ch. 27 - GO Each of the six real batteries in Fig. 27-68...Ch. 27 - In Fig. 27-69, R1 = 20.0 , R2 = 10.0 , and the...Ch. 27 - In Fig.27-70, the ideal battery has emf = 30.0 V,...Ch. 27 - SSM Wires A and B, having equal lengths of 40.0 m...Ch. 27 - What are the a size and b direction up or down of...Ch. 27 - Suppose that, while you are sitting in a chair,...Ch. 27 - GO In Fig. 27-72, the ideal batteries have emfs 1...Ch. 27 - SSM A temperature-stable resistor is made by...Ch. 27 - In Fig. 27-14, assume that = 5.0 V, r = 2.0 , R1...Ch. 27 - SSM An initially uncharged capacitor C is fully...Ch. 27 - In Fig. 27-73, R1 = 5.00 , R2 = 10.0 , R3 = 15.0 ,...Ch. 27 - In Fig. 27-5a, find the potential difference...Ch. 27 - In Fig. 27-8a, calculate the potential difference...Ch. 27 - SSM A controller on an electronic arcade game...Ch. 27 - An automobile gasoline gauge is shown...Ch. 27 - SSM The starting motor of a car is turning too...Ch. 27 - Two resistors R1 and R2 may be connected either in...Ch. 27 - The circuit of Fig. 27-25 shows a capacitor, two...Ch. 27 - In Fig. 27-41, R1 = 10.0 , R2 = 20.0 , and the...Ch. 27 - In Fig. 27-76, R= 10 . what is the equivalent...Ch. 27 - a In Fig. 27-4a, show that the rate at which...Ch. 27 - In Fig. 27-77, the ideal batteries have emfs 1 =...Ch. 27 - Figure 27-28 shows a portion of a circuit through...Ch. 27 - Thermal energy is to be generated in a 0.10 ...Ch. 27 - Figure 27-29 shows three 20.0 resistors. Find the...Ch. 27 - A 120 V power line is protected by a 15 A fuse....Ch. 27 - Figure 27-63 shows an ideal battery of emf = 12...Ch. 27 - SSM A group of N identical batteries of emf and...Ch. 27 - SSM In Fig. 27-48, R1 = R2 = 10.0 , and the ideal...Ch. 27 - SSM In Fig. 27-66, the ideal battery has emf = 30...Ch. 27 - In Fig. 27-81, the ideal batteries have emfs 1 =...Ch. 27 - In Fig. 27-82, an ideal battery of emf = 12.0 V...Ch. 27 - The following table gives the electric potential...Ch. 27 - In Fig. 27-83, 1 = 6.00 V, 2 = 12.0 V, R1= 200 ...Ch. 27 - A three-way 120 V lamp bulb that contains two...Ch. 27 - In Fig. 27-84, R1 = R2 = 2.0 , R3 = 4.0 , R4 = 3.0...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Choose the best answer to each of the following. Explain your reasoning. An astronomical unit is (a) any planet...
Cosmic Perspective Fundamentals
52. You are target shooting using a toy gun that fires a small ball at a speed of 15 m/s. When the gun is fire...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Contrast the fertility of an allotetraploid with an autotriploid and an autotetraploid.
Concepts of Genetics (12th Edition)
The number of named species is about __________, but the actual number of species on Earth is estimated to be a...
Biology: Life on Earth (11th Edition)
3. What is free-fall, and why does it make you weightless? Briefly describe why astronauts are weightless in th...
The Cosmic Perspective (8th Edition)
If someone at the other end of a room smokes a cigarette, you may breathe in some smoke. The movement of smoke ...
Campbell Essential Biology with Physiology (5th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A potential difference of 1.00 V is maintained across a 10.0- resistor for a period of 20.0 s. What total charge passes by a point in one of the wires connected to the resistor in this time interval? (a) 200 C (b) 20.0 C (c) 2.00 C (d) 0.005 00 C (e) 0.050 0 Carrow_forwardCylindrical-conductors has inner and outer radii of 2 mm and 100 mm, respectively. If V(p = 2 mm) = 150 V and V(p = 100 mm) = 0 V, Ɛr = 10, %3D dielectric conductivity 5x10-4 s/m, the dielectric resistance equals to 803.96 2 1024.59 2 1153.66 2 1245.23 2arrow_forwardCylindrical-conductors has inner and outer radii of 2 mm and 50 mm, respectively. If V(p = 2 mm) = 150 V and V(p = 50 mm) = 0 V, &r 10, dielectric conductivity 5x10-4 s/m, the dielectric resistance equals to 803.96 2 1024.59 2 1153.66 Q 1245.23 2arrow_forward
- In the figure ₁ = 2.40 V, 2 = 0.821 V, R₁ = 4.260, R₂ = 2.67 0, R3 = 4.99 Q, and both batteries are ideal. What is the rate at which energy is dissipated in (a) R₁, (b) R₂, and (c) R3? What is the power of (d) battery 1 and (e) battery 2? www R₁ 18₁ R₂ R₂8₂ (a) Number (b) Number (c) Number (d) Number (e) Number i i Units Units Units Units Unitsarrow_forwardTwo plates are horizontal and are separated by 1.0 cm and are connected to a 100 volt battery with magnitude E =1.00x 10 4 N IC. Suppose the direction of E is vertically upward. (c) how much time is required for it to travel this distance? O 2.41 x 109 s O 5.19 x 10-9 s O 3.37 x 10-9 s O 1.19 x 10-9 sarrow_forwardIn the figure ₁ = 4.03 V, 2 = 0.838 V, R₁ = 5.400, R₂ = 1.660, R3 = 5.39 Q, and both batteries are ideal. What is the rate at which energy is dissipated in (a) R₁, (b) R₂, and (c) R3? What is the power of (d) battery 1 and (e) battery 2? www R₁ R₂ - 18₁ Rs Ef (a) Number i 1.35 Units W (b) Number 0.121 Units W (c) Number i 0.310 (d) Number i (e) Number i Units W Units W Units Warrow_forward
- In the figure £₁ = 4.03 V, 2 = 0.838 V, R₁ = 5.400, R₂ = 1.660, R3 = 5.39 Q, and both batteries are ideal. What is the rate at which energy is dissipated in (a) R₁. (b) R2, and (c) R3? What is the power of (d) battery 1 and (e) battery 2? www R₁ R₂ -18₁ R₂ E (a) Number i Units (b) Number i Units (c) Number Units (d) Number i Units (e) Number Units >arrow_forwardIn the figure & = 4.21 V, 82 = 0.945 V, R1 = 4.11 0, R2 = 2.36 0, R3 = 4.71 0, and both batteries are ideal. What is the rate at which energy is dissipated in (a) R1, (b) R2, and (c) R3? What is the power of (d) battery 1 and (e) battery 2? ww R2 R (a) Number i Units (b) Number i Units (c) Number i Units (d) Number i Units (e) Number i Unitsarrow_forwardIn the figure £₁ = 4.03 V, 2 = 0.838 V, R₁ = 5.400, R₂ = 1.66 0, R3 = 5.39 Q, and both batteries are ideal. What is the rate at which energy is dissipated in (a) R₁, (b) R₂, and (c) R3? What is the power of (d) battery 1 and (e) battery 2? R₁ R₂ Units W Units W Units W Units Units www Rg E₂ (a) Number i 1.39 (b) Number i 0.12 (c) Number i 0.31 (d) Number i (e) Number i W W < < <arrow_forward
- For the circuit shown in Fig. Q1(c), the capacitor is initially charged to 2.5 V with the polarity shown. Calculate the voltage vc (t) when the switch (S) is closed. + 7.5 V R, Σ 3.3 ΚΩ R₂ 9.5 ΚΩ S 42 uF - 15 V Fig. Q1(c)arrow_forwardIn the figure e, = 2.32 V, E2 = 0.997 V, R1 = 6.70 N, R2 = 2.93 Q, R3 = 3.58 N, and both batteries are ideal. What is the rate at which energy is dissipated in (a) R1, (b) R2, and (c) R3? What is the power of (d) battery 1 and (e) battery 2? ww (a) Number 0.304 Units W (b) Number 0.0038 Units W (c) Number 0.222 Units (d) Number 0.494 Units (e) Number 0.0359 Unitsarrow_forwardIn the figure ℰ1 = 3.22 V, ℰ2 = 0.927 V, R1 = 3.89 Ω, R2 = 2.23 Ω, R3 = 3.65 Ω, and both batteries are ideal. What is the rate at which energy is dissipated in (a) R1, (b) R2, and (c) R3? What is the power of (d) battery 1 and (e) battery 2?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Ohm's law Explained; Author: ALL ABOUT ELECTRONICS;https://www.youtube.com/watch?v=PV8CMZZKrB4;License: Standard YouTube License, CC-BY