Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 27, Problem 53P
In Fig. 27-14, assume that = 3.0 V, r = 100 Ω, R1 = 250 Ω, and R2 = 300 Ω. If the voltmeter resistance Rv is 5.0 is kΩ, what percent error does it introduce into the measurement of the potential difference across R1? Ignore the presence of the ammeter.
Figure 27-14 A single-loop circuit, showing how to connect an ammeter (A) and a voltmeter (V).
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
An RC circuit takes t = 1.58 s to charge to 45% when a voltage of ΔV = 5.5 V is applied and it has an R=1.5Ω.
How much charge, in coulombs, is on the plates of the capacitor when it is fully charged?
A capacitor of capacitance C= 10 µF is connected to a
resistance R = 2 2 and a battery of emf E= 5 V of negligible
internal resistance. After 20 µs of completing the circuit, find
C
HH
R
WW
E
(a) power delivered by the battery
(b) power dissipated as heat
(c) rate of energy stored in the capacitor
(a) Suppose two resistors are connected in parallel with resistances Rị and R2 measured in Ohms (N). The total
resistance R is given by
1
1
1
R
R1
R2
Suppose R1 is increasing at a rate of 1/4 2/s and R2 is increasing at a rate of 1/16 N/s. At what rate is R changing
when R1 = 1/2 N and R2 = 1/4 N.
(b) Car A is traveling North at a rate of 60 mi/hr, car B is traveling West at a rate of 45 mi/hr. The cars are on
straight roads approaching an intersection point. At what rate is the distance between the cars changing when Car A
is 3 miles from the intersection and Car B is 4 miles from the intersection.
Chapter 27 Solutions
Fundamentals of Physics Extended
Ch. 27 - a In Fig. 27-18a, with R1R2, is the potential...Ch. 27 - a In Fig. 27-18a, are resistors R1 and R3 in...Ch. 27 - You are to connect resistors R1 and R2, with R1R2,...Ch. 27 - In Fig. 27-19, a circuit consists of a battery and...Ch. 27 - For each circuit in Fig 27-20, are the resistors...Ch. 27 - Res-monster maze. In Fig. 27-21, all the resistors...Ch. 27 - A resistor R1 is wired to a battery, then resistor...Ch. 27 - What is the equivalent resistance of three...Ch. 27 - Two resistors are wired to a battery. a In which...Ch. 27 - Cap-monster maze. In Fig. 27-22, all the...
Ch. 27 - Initially, a single resistor, R1 is wired to a...Ch. 27 - After the switch in Fig. 27-15 is closed on point...Ch. 27 - Figure 27-24 shows three sections of circuit that...Ch. 27 - SSM WWW In Fig. 27-25, the ideal batteries have...Ch. 27 - In Fig. 27-26, the ideal batteries have emfs 1 =...Ch. 27 - ILW A car battery with a 12 V emf and an internal...Ch. 27 - GO Figure 27-27 shows a circuit of four resistors...Ch. 27 - A 5.0 A current is set up in a circuit for 6.0 min...Ch. 27 - A standard flashlight battery can deliver about...Ch. 27 - A wire of resistance 5.0 is connected to a...Ch. 27 - A certain car battery with a 12.0 V emf has an...Ch. 27 - a In electron-volts, how much work does an ideal...Ch. 27 - a In Fig. 27-28, what value must R have if the...Ch. 27 - SSM In Fig. 27-29, circuit section AB absorbs...Ch. 27 - Figure 27-30 shows a resistor of resistance R =...Ch. 27 - A 10-km-long underground cable extends east to...Ch. 27 - GO In Fig. 27-32a, both batteries have emf = 1.20...Ch. 27 - ILW The current in a single-loop circuit with one...Ch. 27 - A solar cell generates a potential difference of...Ch. 27 - SSM In Fig. 27-33, battery 1 has emf 1 = 12.0 V...Ch. 27 - In Fig. 27-9, what is the potential difference Vd ...Ch. 27 - A total resistance of 3.00 is to be produced by...Ch. 27 - When resistors 1 and 2 are connected in series,...Ch. 27 - Prob. 21PCh. 27 - Figure 27-34 shows five 5.00 resistors. Find the...Ch. 27 - In Fig. 27-35, R1 = 100 , R2 = 50 , and the ideal...Ch. 27 - In Fig. 27-36, R1 = R2 = 4.00 and R3 = 2.50 ....Ch. 27 - SSM Nine copper wires of length l and diameter d...Ch. 27 - Figure 27-37 shows a battery connected across a...Ch. 27 - Side flash. Figure 27-38 indicates one reason no...Ch. 27 - The ideal battery in Fig. 27-39a has emf = 6.0 V....Ch. 27 - In Fig. 27-40, R1 = 6.00 , R2 = 18.0 , and the...Ch. 27 - GO In Fig. 27-41, the ideal batteries have emfs 1...Ch. 27 - SSMGO In Fig. 27-42, the ideal batteries have emfs...Ch. 27 - Both batteries in Fig. 27-43a are ideal. Emf 1 of...Ch. 27 - GO In Fig. 27-44. the current in resistance 6 is...Ch. 27 - The resistances in Figs. 27-45a and b are all 6.0...Ch. 27 - GO In Fig. 27-46, = 12.0 V, R1, = 2000 , R2 =...Ch. 27 - GO In Fig. 27-47, 1 = 6.00 V, 2 = 12.0 V, R1, =...Ch. 27 - In Fig. 27-48, the resistances are R1 = 2.00 , R2...Ch. 27 - Figure 27-49 shows a section of a circuit. The...Ch. 27 - GO In Fig. 27-50, two batteries with an emf =...Ch. 27 - GO Two identical batteries of emf = 12.0 V and...Ch. 27 - In Fig. 27-41, 1 = 3.00 V, 2 = 1.00 V, R1 = 4.00 ,...Ch. 27 - In Fig. 27-52, an array of n parallel resistors is...Ch. 27 - You are given a number of 10 resistors, each...Ch. 27 - GO In Fig. 27-53, R1 = 100 , R2 = R3 = 50.0 , R4 =...Ch. 27 - ILW In Fig. 27-54, the resistances are R1 = 1.0 ...Ch. 27 - In Fig. 27-55a, resistor 3 is a variable resistor...Ch. 27 - SSM A copper wire of radius a = 0.250 mm has an...Ch. 27 - GO In Fig. 27-53, the resistors have the values R1...Ch. 27 - ILW a In Fig. 27-56, what current does the ammeter...Ch. 27 - In Fig. 27-57, R1 = 2.00R, the ammeter resistance...Ch. 27 - In Fig. 27-58, a voltmeter of resistance Rv= 300 ...Ch. 27 - A simple ohmmeter is made by connecting a 1.50V...Ch. 27 - In Fig. 27-14, assume that = 3.0 V, r = 100 , R1 =...Ch. 27 - When the lights of a car are switched on, an...Ch. 27 - In Fig. 27-61, Rsis to be adjusted in value by...Ch. 27 - In Fig. 27-62. a voltmeter of resistance Rv = 300 ...Ch. 27 - Switch S in Fig. 27-63 is closed at time t = 0, to...Ch. 27 - In an RC series circuit, emf = 12.0 V, resistance...Ch. 27 - SSM What multiple of the time constant gives the...Ch. 27 - A capacitor with initial charge q0 is discharge...Ch. 27 - ILW A 15.0 k resistor and a capacitor are...Ch. 27 - Figure 27-64 shows the circuit of a flashing lamp,...Ch. 27 - SSM WWWIn the circuit of Fig. 27-65, = 1.2 kV, C=...Ch. 27 - A capacitor with an initial potential difference...Ch. 27 - GO In Fig. 27-66. R1 = 10.0 k, R2 = 15.0 k, C=...Ch. 27 - Figure 27-67 display two circuits with a charged...Ch. 27 - The potential difference between the plates of a...Ch. 27 - A 1.0 F capacitor with an initial stored energy of...Ch. 27 - GO A 3.00 M resistor and a 1.00 F capacitor are...Ch. 27 - GO Each of the six real batteries in Fig. 27-68...Ch. 27 - In Fig. 27-69, R1 = 20.0 , R2 = 10.0 , and the...Ch. 27 - In Fig.27-70, the ideal battery has emf = 30.0 V,...Ch. 27 - SSM Wires A and B, having equal lengths of 40.0 m...Ch. 27 - What are the a size and b direction up or down of...Ch. 27 - Suppose that, while you are sitting in a chair,...Ch. 27 - GO In Fig. 27-72, the ideal batteries have emfs 1...Ch. 27 - SSM A temperature-stable resistor is made by...Ch. 27 - In Fig. 27-14, assume that = 5.0 V, r = 2.0 , R1...Ch. 27 - SSM An initially uncharged capacitor C is fully...Ch. 27 - In Fig. 27-73, R1 = 5.00 , R2 = 10.0 , R3 = 15.0 ,...Ch. 27 - In Fig. 27-5a, find the potential difference...Ch. 27 - In Fig. 27-8a, calculate the potential difference...Ch. 27 - SSM A controller on an electronic arcade game...Ch. 27 - An automobile gasoline gauge is shown...Ch. 27 - SSM The starting motor of a car is turning too...Ch. 27 - Two resistors R1 and R2 may be connected either in...Ch. 27 - The circuit of Fig. 27-25 shows a capacitor, two...Ch. 27 - In Fig. 27-41, R1 = 10.0 , R2 = 20.0 , and the...Ch. 27 - In Fig. 27-76, R= 10 . what is the equivalent...Ch. 27 - a In Fig. 27-4a, show that the rate at which...Ch. 27 - In Fig. 27-77, the ideal batteries have emfs 1 =...Ch. 27 - Figure 27-28 shows a portion of a circuit through...Ch. 27 - Thermal energy is to be generated in a 0.10 ...Ch. 27 - Figure 27-29 shows three 20.0 resistors. Find the...Ch. 27 - A 120 V power line is protected by a 15 A fuse....Ch. 27 - Figure 27-63 shows an ideal battery of emf = 12...Ch. 27 - SSM A group of N identical batteries of emf and...Ch. 27 - SSM In Fig. 27-48, R1 = R2 = 10.0 , and the ideal...Ch. 27 - SSM In Fig. 27-66, the ideal battery has emf = 30...Ch. 27 - In Fig. 27-81, the ideal batteries have emfs 1 =...Ch. 27 - In Fig. 27-82, an ideal battery of emf = 12.0 V...Ch. 27 - The following table gives the electric potential...Ch. 27 - In Fig. 27-83, 1 = 6.00 V, 2 = 12.0 V, R1= 200 ...Ch. 27 - A three-way 120 V lamp bulb that contains two...Ch. 27 - In Fig. 27-84, R1 = R2 = 2.0 , R3 = 4.0 , R4 = 3.0...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Are low-pressure systems cyclones usually associated with fair weather or rainy conditions? Are high-pressure s...
Applications and Investigations in Earth Science (9th Edition)
How Would the experiments result charge if oxygen (O2) were induced in the spark chamber?
Biology: Life on Earth with Physiology (11th Edition)
Where are skeletal cartilages located?
Human Anatomy & Physiology (2nd Edition)
Why can algae and cyanobacteria be considered indicators of productivity as well as of pollution?
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
GO Figure 22-38a shows two charged particles fixed in place on an x axis with separation L. The ratio q1/q2 of ...
Fundamentals of Physics Extended
12. A physics student on the Planet Exidor throws a ball, and its follows the parabolic trajectory shown in FIG...
Physics for Scientists and Engineers: A Strategic Approach, Vol. 1 (Chs 1-21) (4th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Explain why R=R0(1 + a?T) for the temperature variation of the resistance R of an object is not as accurate as P=P0(1 + a?T) which gives the temperature variation of resistivity P.arrow_forwardTwo conducting wires A and B of the same length and radius are connected across the same potential difference. Conductor A has twice the resistivity of conductor B. What is the ratio of the power delivered to A to the power delivered to B? (a) 2 (b) 2 (c) 1 (d) 12 (e)12arrow_forwardReview. When a straight wire is warmed, its resistance is given by R = R0,[1 + a(T T0)] according to Equation 27.20, where a is the temperature coefficient of resistivity. This expression needs to be modified if we include the change in dimensions of the wire due to thermal expansion. For a copper wire of radius 0.100 0 mm and length 2.000 m, find its resistance at 100.0C, including the effects of both thermal expansion and temperature variation of resistivity. Assume the coefficients are known to four significant figures.arrow_forward
- A capacitor with initial charge Q0 is connected across a resistor R at time t = 0. The separation between the plates of the capacitor changes as d = d0/(1 + t) for 0 t 1 s. Find an expression for the voltage drop across the capacitor as a function of time.arrow_forwardA PHY-102 connected a RC circuit using a 3 MQ resistor, 1 µF capacitor, and 4 V battery. The rate at which the energy is being stored (in 10-6 w) in the capacitor at t = 1s is: O 1.13 O 0.95 O 3.82 O 1.08 2.74arrow_forwardFor problem 29 find the magnitude of the current in resistor 1 if it has a resistance of 18.4 Ohms with E = 12.0 V and R2 = 18.0 Ohms. (Answer in 5 sig. figs)arrow_forward
- Te-Learning Portal Courses - Reports e-Services ▼ Academic Departments - ETC - CIMS Salim During an experiment to verify Ohm's law, the voltage supplied and the current through a circuit are measured. [Voltage is measured in Volt (V) and current in Ampere (A)]. ww R on Battery The measured value of the current is I = 3.1 ± 0.2 A and that of the voltage is V = 14 0.5 V. The resistance of the circuit (in N) can be calculated using the formula, R = V/I, Calculate the, a) Resistance (in 2) = b) Fractional uncertainty in the resistance = c) Absolute uncertainty (in 2) in the resistance=arrow_forwardProblem 13: (5% of Assignment Value) A Vo = 225 V voltage source appears in the circuit shown along with four resistors. The resistance values are R₁ = 271 k2, R2 = 272 ks, and R3 = 369 k. Part (a) What is the magnitude of the potential difference, in volts, across resistor R₁? Vi V₁ = 110.891 V sin() cos() tan() Π ()78 HOME cotan() asin() atan() acotan() sinh() acos() E^^ A ↑^ ^4 5 6 * 1 23 cosh() tanh() cotanh() + O Degrees Radians 0 VO BACKSPACE Submit Hint Feedback I give up! Submission(s) Remaining Hints: 4% deduction per hint. Hints remaining: 2 END DEL CLEAR Feedback: 5% deduction per feedback. Part (b) What is the magnitude of the potential difference, in volts, across the leftmost resistor with resistance value R₂? Part (c) What is the magnitude of the potential difference, in volts, across resistor R3? All content 2024 Expert TA, LLCarrow_forwardAn RC circuit includes a 2-k N resistor, a battery with emf of 12.0 V and a capacitor. At t = 0 the switch is closed, and the charging of the capacitor begins. Knowing that the time constant of the circuit is measured to be 1 ms calculate: (a) the capacitance of the capacitor; (b) the time it takes for the voltage across the resistor to reach 4 V, and (c) the charge accumulated on the capacitor during this time interval.arrow_forward
- An RC circuit, comprising a charged capacitor in series with a resistor and a switch, has R = (6.40x10^0) kOhm and C= (3.070x10^O) uF (10-6 F). The capacitor is at full voltage Vo at t = 0, when the switch is closed. How long does it take the capacitor to discharge to 1.0 percent of its initial voltage? Give your answer in seconds to 3 sf. Note: Your answer is assumed to be reduced to the highest power possible. Your Answer: x10 Answerarrow_forward(a) In the figure what value must R have if the current in the circuit is to be 1.1 mA? Take ε1 = 3.0 V, ε2 = 4.2 V, and r1 = r2 = 2.7 Ω. (b) What is the rate at which thermal energy appears in R?arrow_forward. An RC circuit with a 54.0 V power source is connected to a fluorescent lamp as shown in the ngure. The lamp L turns on when the voltage across the capacitor reaches 45.0V, which happens after 0.65 seconds after the switch is closed. If R = the capacitance C? (b) If we must switch the lamps 3 times in a second, what should be the value of capacitance? (c) What is the charge on the capacitor when the lamp just flashes in 3MQ, (a) what is the value of both the cases? ww R 54.0Varrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- College PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
Ohm's law Explained; Author: ALL ABOUT ELECTRONICS;https://www.youtube.com/watch?v=PV8CMZZKrB4;License: Standard YouTube License, CC-BY