Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 27, Problem 47P
SSM A copper wire of radius a = 0.250 mm has an aluminum jacket of outer radius b = 0.380 mm. There is a current i 2.00 A in the composite wire. Using Table 26-1, Calculate the current in (a) the copper and (b) the aluminum. (c) If a potential difference V = 12.0 V between the ends maintains the current, what is the length of the composite wire?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The current density in a copper wire of diameter 1.02 mm is 1.75 x 10⁵ A/m². The number of free electrons per cubic meter of copper is 8.5 x 10²⁸. Find the (a) current in the wire and (b) magnitude of drift velocity of electron in the wire.
Do it quickly, will upvote you.
A 0.68-mm-diameter copper wire carries a tiny current of 2.5 μA. The molar mass of copper is 63.5 g/mole and its density is 8900 kg/m^3. NA=6.02×10^23
Estimate the electron drift velocity. Assume one free electron per atom.
Express your answer to two significant figures and include the appropriate units.
vd=
Chapter 27 Solutions
Fundamentals of Physics Extended
Ch. 27 - a In Fig. 27-18a, with R1R2, is the potential...Ch. 27 - a In Fig. 27-18a, are resistors R1 and R3 in...Ch. 27 - You are to connect resistors R1 and R2, with R1R2,...Ch. 27 - In Fig. 27-19, a circuit consists of a battery and...Ch. 27 - For each circuit in Fig 27-20, are the resistors...Ch. 27 - Res-monster maze. In Fig. 27-21, all the resistors...Ch. 27 - A resistor R1 is wired to a battery, then resistor...Ch. 27 - What is the equivalent resistance of three...Ch. 27 - Two resistors are wired to a battery. a In which...Ch. 27 - Cap-monster maze. In Fig. 27-22, all the...
Ch. 27 - Initially, a single resistor, R1 is wired to a...Ch. 27 - After the switch in Fig. 27-15 is closed on point...Ch. 27 - Figure 27-24 shows three sections of circuit that...Ch. 27 - SSM WWW In Fig. 27-25, the ideal batteries have...Ch. 27 - In Fig. 27-26, the ideal batteries have emfs 1 =...Ch. 27 - ILW A car battery with a 12 V emf and an internal...Ch. 27 - GO Figure 27-27 shows a circuit of four resistors...Ch. 27 - A 5.0 A current is set up in a circuit for 6.0 min...Ch. 27 - A standard flashlight battery can deliver about...Ch. 27 - A wire of resistance 5.0 is connected to a...Ch. 27 - A certain car battery with a 12.0 V emf has an...Ch. 27 - a In electron-volts, how much work does an ideal...Ch. 27 - a In Fig. 27-28, what value must R have if the...Ch. 27 - SSM In Fig. 27-29, circuit section AB absorbs...Ch. 27 - Figure 27-30 shows a resistor of resistance R =...Ch. 27 - A 10-km-long underground cable extends east to...Ch. 27 - GO In Fig. 27-32a, both batteries have emf = 1.20...Ch. 27 - ILW The current in a single-loop circuit with one...Ch. 27 - A solar cell generates a potential difference of...Ch. 27 - SSM In Fig. 27-33, battery 1 has emf 1 = 12.0 V...Ch. 27 - In Fig. 27-9, what is the potential difference Vd ...Ch. 27 - A total resistance of 3.00 is to be produced by...Ch. 27 - When resistors 1 and 2 are connected in series,...Ch. 27 - Prob. 21PCh. 27 - Figure 27-34 shows five 5.00 resistors. Find the...Ch. 27 - In Fig. 27-35, R1 = 100 , R2 = 50 , and the ideal...Ch. 27 - In Fig. 27-36, R1 = R2 = 4.00 and R3 = 2.50 ....Ch. 27 - SSM Nine copper wires of length l and diameter d...Ch. 27 - Figure 27-37 shows a battery connected across a...Ch. 27 - Side flash. Figure 27-38 indicates one reason no...Ch. 27 - The ideal battery in Fig. 27-39a has emf = 6.0 V....Ch. 27 - In Fig. 27-40, R1 = 6.00 , R2 = 18.0 , and the...Ch. 27 - GO In Fig. 27-41, the ideal batteries have emfs 1...Ch. 27 - SSMGO In Fig. 27-42, the ideal batteries have emfs...Ch. 27 - Both batteries in Fig. 27-43a are ideal. Emf 1 of...Ch. 27 - GO In Fig. 27-44. the current in resistance 6 is...Ch. 27 - The resistances in Figs. 27-45a and b are all 6.0...Ch. 27 - GO In Fig. 27-46, = 12.0 V, R1, = 2000 , R2 =...Ch. 27 - GO In Fig. 27-47, 1 = 6.00 V, 2 = 12.0 V, R1, =...Ch. 27 - In Fig. 27-48, the resistances are R1 = 2.00 , R2...Ch. 27 - Figure 27-49 shows a section of a circuit. The...Ch. 27 - GO In Fig. 27-50, two batteries with an emf =...Ch. 27 - GO Two identical batteries of emf = 12.0 V and...Ch. 27 - In Fig. 27-41, 1 = 3.00 V, 2 = 1.00 V, R1 = 4.00 ,...Ch. 27 - In Fig. 27-52, an array of n parallel resistors is...Ch. 27 - You are given a number of 10 resistors, each...Ch. 27 - GO In Fig. 27-53, R1 = 100 , R2 = R3 = 50.0 , R4 =...Ch. 27 - ILW In Fig. 27-54, the resistances are R1 = 1.0 ...Ch. 27 - In Fig. 27-55a, resistor 3 is a variable resistor...Ch. 27 - SSM A copper wire of radius a = 0.250 mm has an...Ch. 27 - GO In Fig. 27-53, the resistors have the values R1...Ch. 27 - ILW a In Fig. 27-56, what current does the ammeter...Ch. 27 - In Fig. 27-57, R1 = 2.00R, the ammeter resistance...Ch. 27 - In Fig. 27-58, a voltmeter of resistance Rv= 300 ...Ch. 27 - A simple ohmmeter is made by connecting a 1.50V...Ch. 27 - In Fig. 27-14, assume that = 3.0 V, r = 100 , R1 =...Ch. 27 - When the lights of a car are switched on, an...Ch. 27 - In Fig. 27-61, Rsis to be adjusted in value by...Ch. 27 - In Fig. 27-62. a voltmeter of resistance Rv = 300 ...Ch. 27 - Switch S in Fig. 27-63 is closed at time t = 0, to...Ch. 27 - In an RC series circuit, emf = 12.0 V, resistance...Ch. 27 - SSM What multiple of the time constant gives the...Ch. 27 - A capacitor with initial charge q0 is discharge...Ch. 27 - ILW A 15.0 k resistor and a capacitor are...Ch. 27 - Figure 27-64 shows the circuit of a flashing lamp,...Ch. 27 - SSM WWWIn the circuit of Fig. 27-65, = 1.2 kV, C=...Ch. 27 - A capacitor with an initial potential difference...Ch. 27 - GO In Fig. 27-66. R1 = 10.0 k, R2 = 15.0 k, C=...Ch. 27 - Figure 27-67 display two circuits with a charged...Ch. 27 - The potential difference between the plates of a...Ch. 27 - A 1.0 F capacitor with an initial stored energy of...Ch. 27 - GO A 3.00 M resistor and a 1.00 F capacitor are...Ch. 27 - GO Each of the six real batteries in Fig. 27-68...Ch. 27 - In Fig. 27-69, R1 = 20.0 , R2 = 10.0 , and the...Ch. 27 - In Fig.27-70, the ideal battery has emf = 30.0 V,...Ch. 27 - SSM Wires A and B, having equal lengths of 40.0 m...Ch. 27 - What are the a size and b direction up or down of...Ch. 27 - Suppose that, while you are sitting in a chair,...Ch. 27 - GO In Fig. 27-72, the ideal batteries have emfs 1...Ch. 27 - SSM A temperature-stable resistor is made by...Ch. 27 - In Fig. 27-14, assume that = 5.0 V, r = 2.0 , R1...Ch. 27 - SSM An initially uncharged capacitor C is fully...Ch. 27 - In Fig. 27-73, R1 = 5.00 , R2 = 10.0 , R3 = 15.0 ,...Ch. 27 - In Fig. 27-5a, find the potential difference...Ch. 27 - In Fig. 27-8a, calculate the potential difference...Ch. 27 - SSM A controller on an electronic arcade game...Ch. 27 - An automobile gasoline gauge is shown...Ch. 27 - SSM The starting motor of a car is turning too...Ch. 27 - Two resistors R1 and R2 may be connected either in...Ch. 27 - The circuit of Fig. 27-25 shows a capacitor, two...Ch. 27 - In Fig. 27-41, R1 = 10.0 , R2 = 20.0 , and the...Ch. 27 - In Fig. 27-76, R= 10 . what is the equivalent...Ch. 27 - a In Fig. 27-4a, show that the rate at which...Ch. 27 - In Fig. 27-77, the ideal batteries have emfs 1 =...Ch. 27 - Figure 27-28 shows a portion of a circuit through...Ch. 27 - Thermal energy is to be generated in a 0.10 ...Ch. 27 - Figure 27-29 shows three 20.0 resistors. Find the...Ch. 27 - A 120 V power line is protected by a 15 A fuse....Ch. 27 - Figure 27-63 shows an ideal battery of emf = 12...Ch. 27 - SSM A group of N identical batteries of emf and...Ch. 27 - SSM In Fig. 27-48, R1 = R2 = 10.0 , and the ideal...Ch. 27 - SSM In Fig. 27-66, the ideal battery has emf = 30...Ch. 27 - In Fig. 27-81, the ideal batteries have emfs 1 =...Ch. 27 - In Fig. 27-82, an ideal battery of emf = 12.0 V...Ch. 27 - The following table gives the electric potential...Ch. 27 - In Fig. 27-83, 1 = 6.00 V, 2 = 12.0 V, R1= 200 ...Ch. 27 - A three-way 120 V lamp bulb that contains two...Ch. 27 - In Fig. 27-84, R1 = R2 = 2.0 , R3 = 4.0 , R4 = 3.0...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Foods packed in plastic for microwaving are a. dehydrated. b. freeze-dried. c. packaged aseptically. d. commerc...
Microbiology: An Introduction
The number of named species is about __________, but the actual number of species on Earth is estimated to be a...
Biology: Life on Earth (11th Edition)
Identify each of the following reproductive barriers as prezygotic or postzygotic a. One lilac species lives on...
Campbell Essential Biology (7th Edition)
11.57 Draw the cis and trans isomers for each of the following: (11.6)
a. 2-pentene
b. 3-hexene
Chemistry: An Introduction to General, Organic, and Biological Chemistry (13th Edition)
Find the lowest temperature at which it is possible to have water in the liquid phase. At what pressure must th...
Fundamentals Of Thermodynamics
11. Birds and mammals are both endothermic, and both have four-chambered hearts. Most reptiles are ectothermic ...
Campbell Biology: Concepts & Connections (9th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Consider a wire of a circular cross-section with a radius of R = 3.00mm. The magnitude of the currentdensity is modeled as J=cr2=5.00106Am4r2 . Whatis the current through the inner section of the wire from the center to r = 0.5R?arrow_forwardAn 18 gauge copper wire (diameter 1.02 mm) carries a current with a current density of 3.20 * 106 A/m2. The density of free electrons for copper is 8.5 * 1028 electrons per cubic meter. Calculate (a) the current in the wire and (b) the magnitude of the drift velocity of electrons in the wire.arrow_forwardA strip of doped silicon 260.0 um wide contains 8.80 x 10-2 conduction electrons per cubic meter and an insignificant number of holes. When the strip carries a current of 102 µA, the drift speed of the electrons is 59.6 cm/s. What is the thickness of the strip? Umarrow_forward
- Chapter 26, Problem 051 GO Wire C and wire D are made from different materials and have length Lc = LD = 1.4 m. The resistivity and diameter of wire C are 5.4 x 10-6 2-m and 1.28 mm, and those of wire D are 3.9 x 10-6 Q:m and 0.53 mm. The wires are joined as shown in the figure and a current of 4.6 A is set up in them. What is the electric potential difference between (a) points 1 and 2 and (b) points 2 and 3? What is the rate at which energy is dissipated between (c) points 1 and 2 and (d) points 2 and 3? -Lp (a) Number Units (b) Number Units (c) Number Units (d) Number Unitsarrow_forwardIn a 100-m-long conductor of cylindrical cross-section (radius ro = 5 mm), the axial current density is J = î2 A/m². The conductivity is o= 5.8-107 S/m. Find a) the current flowing through the conductor, b) the voltage across the entire length of the conductor, c) the overall resistance of the conductor.arrow_forwardA tungsten wire has a radius of 0.093 mm and is heated from 20.0 to 1322 °C. The temperature coefficient of resistivity is a = 4.5 x 10 3 (Cº)-¹. When 110 V is applied across the ends of the hot wire, a current of 2.3 A is produced. How long is the wire? Neglect any effects due to thermal expansion of the wire. Number i 4.408939318 Units marrow_forward
- A small but measurable current of 3.0 x 10 10 A exists in a copper wire whose diameter is 2.4 mm. The number of charge carriers per unit volume is 8.49 x 1028 m 3. Assuming the current is uniform, calculate the (a) current density and (b) electron drift speed. (a) Number i Units (b) Number i Unitsarrow_forwardAsap plzzzzarrow_forwardProblem 1: A cell phone battery uses chemistry to create a charge separation between the terminals (anode and cathode). Such a battery is listed as having a capacity of Q = 7.5E-08 C. Part (a) How many free electrons does the battery contain, N? Part (b) If there are 1.0 million electrons moving through the phone every second how long will the battery last in seconds? Part (c) Current, I, is given in amps which are coulombs per second. What is the current passing through the phone?arrow_forward
- A spool of copper wire 290 m long and with a diameter of 0.440 mm is at 20.0°C. For copper, the resistivity is 1.70 x 10 8 .m and the temperature coefficient of resistivity is 3.90 x 10- (°C)-1. (a) What is the magnitude of the electric field (in V/m) in the wire if it carries a current of 0.550 A? V/m (b) What is the electric power (in W) delivered to the spool while it carries a current of 0.550 A? W (c) What is the power (in W) delivered to the spool if the potential difference across the wire is held constant and the temperature is increased to 400°C? Warrow_forwardSilver wire has a cross-sectional area A = 2.0 mm2. A total of 9.4 x 10 electrons pass through the wire in 3.0 s. The conduction electron density in silver is 5.8 x 1028 electrons/m. What is the drift velocity of these electrons?arrow_forwardThe current density in a wire is uniform and has magnitude 2.0 * 10^6 A/m2, the wire’s length is 5.0 m, and the density of conduction electrons is 8.49 *10^28 m ohm3. How long does an electron take (on the average) to travel the length of the wire?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
Ohm's law Explained; Author: ALL ABOUT ELECTRONICS;https://www.youtube.com/watch?v=PV8CMZZKrB4;License: Standard YouTube License, CC-BY