Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 27, Problem 17P
SSM In Fig. 27-33, battery 1 has emf ℰ1 = 12.0 V and internal resistance r1 = 0.016 Ω and battery 2 has emf ℰ2 = 12.0 V and internal resistance r2 = 0.012 Ω. The batteries are connected in series with an external resistance R. (a) What R Value makes the terminal-to-terminal potential difference of one of the batteries zero? (b) Which battery is that?
Figure 27-33 Problem 17.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Q (C)
capacitor P
kapasitor P
0.63 Q.
0.37 Q.
2 uF
3 µF
37 80
5 uF
(a)
(b)
FIGURE 2
RAJAH 2
The graph in FIGURE 2(a) shows how the charge, Q on a capacitor P
changes with time, I when it is charged through a 20 Q resistor. Determine the
capacitance of capacitor P.
(a)
Graf dalam RAJAH 2(a) menunjukkan bagaimana cas, Q pada satu kapasitor
P berubah dengan masa, t apabila ia dicas melalui satu perintang 20 2.
Tentukan kapasitans bagi kapasitor P.
(b)
Capacitor P is then arranged as shown in FIGURE 2(b). Determine the
effective capacitance.
Kapasitor P kemudian disusun seperti RAJAH 2(b). Tentukan kapasitans
berkesan.
2.
Asap plzzzz
14 O In Fig. 27-32a, both batteries have emf & = 1.20 V and the
external resistance R is a variable resistor. Figure 27-32b gives the
electric potentials V between the terminals of each battery as func-
tions of R: Curve 1 corresponds to battery 1, and curve 2 corre-
sponds to battery 2. The horizontal scale is set by R, = 0.20 2. What
is the internal resistance of (a) battery 1 and (b) battery 2?
0.5
-0.3
R (2)
(a)
(6)
(A)A
Chapter 27 Solutions
Fundamentals of Physics Extended
Ch. 27 - a In Fig. 27-18a, with R1R2, is the potential...Ch. 27 - a In Fig. 27-18a, are resistors R1 and R3 in...Ch. 27 - You are to connect resistors R1 and R2, with R1R2,...Ch. 27 - In Fig. 27-19, a circuit consists of a battery and...Ch. 27 - For each circuit in Fig 27-20, are the resistors...Ch. 27 - Res-monster maze. In Fig. 27-21, all the resistors...Ch. 27 - A resistor R1 is wired to a battery, then resistor...Ch. 27 - What is the equivalent resistance of three...Ch. 27 - Two resistors are wired to a battery. a In which...Ch. 27 - Cap-monster maze. In Fig. 27-22, all the...
Ch. 27 - Initially, a single resistor, R1 is wired to a...Ch. 27 - After the switch in Fig. 27-15 is closed on point...Ch. 27 - Figure 27-24 shows three sections of circuit that...Ch. 27 - SSM WWW In Fig. 27-25, the ideal batteries have...Ch. 27 - In Fig. 27-26, the ideal batteries have emfs 1 =...Ch. 27 - ILW A car battery with a 12 V emf and an internal...Ch. 27 - GO Figure 27-27 shows a circuit of four resistors...Ch. 27 - A 5.0 A current is set up in a circuit for 6.0 min...Ch. 27 - A standard flashlight battery can deliver about...Ch. 27 - A wire of resistance 5.0 is connected to a...Ch. 27 - A certain car battery with a 12.0 V emf has an...Ch. 27 - a In electron-volts, how much work does an ideal...Ch. 27 - a In Fig. 27-28, what value must R have if the...Ch. 27 - SSM In Fig. 27-29, circuit section AB absorbs...Ch. 27 - Figure 27-30 shows a resistor of resistance R =...Ch. 27 - A 10-km-long underground cable extends east to...Ch. 27 - GO In Fig. 27-32a, both batteries have emf = 1.20...Ch. 27 - ILW The current in a single-loop circuit with one...Ch. 27 - A solar cell generates a potential difference of...Ch. 27 - SSM In Fig. 27-33, battery 1 has emf 1 = 12.0 V...Ch. 27 - In Fig. 27-9, what is the potential difference Vd ...Ch. 27 - A total resistance of 3.00 is to be produced by...Ch. 27 - When resistors 1 and 2 are connected in series,...Ch. 27 - Prob. 21PCh. 27 - Figure 27-34 shows five 5.00 resistors. Find the...Ch. 27 - In Fig. 27-35, R1 = 100 , R2 = 50 , and the ideal...Ch. 27 - In Fig. 27-36, R1 = R2 = 4.00 and R3 = 2.50 ....Ch. 27 - SSM Nine copper wires of length l and diameter d...Ch. 27 - Figure 27-37 shows a battery connected across a...Ch. 27 - Side flash. Figure 27-38 indicates one reason no...Ch. 27 - The ideal battery in Fig. 27-39a has emf = 6.0 V....Ch. 27 - In Fig. 27-40, R1 = 6.00 , R2 = 18.0 , and the...Ch. 27 - GO In Fig. 27-41, the ideal batteries have emfs 1...Ch. 27 - SSMGO In Fig. 27-42, the ideal batteries have emfs...Ch. 27 - Both batteries in Fig. 27-43a are ideal. Emf 1 of...Ch. 27 - GO In Fig. 27-44. the current in resistance 6 is...Ch. 27 - The resistances in Figs. 27-45a and b are all 6.0...Ch. 27 - GO In Fig. 27-46, = 12.0 V, R1, = 2000 , R2 =...Ch. 27 - GO In Fig. 27-47, 1 = 6.00 V, 2 = 12.0 V, R1, =...Ch. 27 - In Fig. 27-48, the resistances are R1 = 2.00 , R2...Ch. 27 - Figure 27-49 shows a section of a circuit. The...Ch. 27 - GO In Fig. 27-50, two batteries with an emf =...Ch. 27 - GO Two identical batteries of emf = 12.0 V and...Ch. 27 - In Fig. 27-41, 1 = 3.00 V, 2 = 1.00 V, R1 = 4.00 ,...Ch. 27 - In Fig. 27-52, an array of n parallel resistors is...Ch. 27 - You are given a number of 10 resistors, each...Ch. 27 - GO In Fig. 27-53, R1 = 100 , R2 = R3 = 50.0 , R4 =...Ch. 27 - ILW In Fig. 27-54, the resistances are R1 = 1.0 ...Ch. 27 - In Fig. 27-55a, resistor 3 is a variable resistor...Ch. 27 - SSM A copper wire of radius a = 0.250 mm has an...Ch. 27 - GO In Fig. 27-53, the resistors have the values R1...Ch. 27 - ILW a In Fig. 27-56, what current does the ammeter...Ch. 27 - In Fig. 27-57, R1 = 2.00R, the ammeter resistance...Ch. 27 - In Fig. 27-58, a voltmeter of resistance Rv= 300 ...Ch. 27 - A simple ohmmeter is made by connecting a 1.50V...Ch. 27 - In Fig. 27-14, assume that = 3.0 V, r = 100 , R1 =...Ch. 27 - When the lights of a car are switched on, an...Ch. 27 - In Fig. 27-61, Rsis to be adjusted in value by...Ch. 27 - In Fig. 27-62. a voltmeter of resistance Rv = 300 ...Ch. 27 - Switch S in Fig. 27-63 is closed at time t = 0, to...Ch. 27 - In an RC series circuit, emf = 12.0 V, resistance...Ch. 27 - SSM What multiple of the time constant gives the...Ch. 27 - A capacitor with initial charge q0 is discharge...Ch. 27 - ILW A 15.0 k resistor and a capacitor are...Ch. 27 - Figure 27-64 shows the circuit of a flashing lamp,...Ch. 27 - SSM WWWIn the circuit of Fig. 27-65, = 1.2 kV, C=...Ch. 27 - A capacitor with an initial potential difference...Ch. 27 - GO In Fig. 27-66. R1 = 10.0 k, R2 = 15.0 k, C=...Ch. 27 - Figure 27-67 display two circuits with a charged...Ch. 27 - The potential difference between the plates of a...Ch. 27 - A 1.0 F capacitor with an initial stored energy of...Ch. 27 - GO A 3.00 M resistor and a 1.00 F capacitor are...Ch. 27 - GO Each of the six real batteries in Fig. 27-68...Ch. 27 - In Fig. 27-69, R1 = 20.0 , R2 = 10.0 , and the...Ch. 27 - In Fig.27-70, the ideal battery has emf = 30.0 V,...Ch. 27 - SSM Wires A and B, having equal lengths of 40.0 m...Ch. 27 - What are the a size and b direction up or down of...Ch. 27 - Suppose that, while you are sitting in a chair,...Ch. 27 - GO In Fig. 27-72, the ideal batteries have emfs 1...Ch. 27 - SSM A temperature-stable resistor is made by...Ch. 27 - In Fig. 27-14, assume that = 5.0 V, r = 2.0 , R1...Ch. 27 - SSM An initially uncharged capacitor C is fully...Ch. 27 - In Fig. 27-73, R1 = 5.00 , R2 = 10.0 , R3 = 15.0 ,...Ch. 27 - In Fig. 27-5a, find the potential difference...Ch. 27 - In Fig. 27-8a, calculate the potential difference...Ch. 27 - SSM A controller on an electronic arcade game...Ch. 27 - An automobile gasoline gauge is shown...Ch. 27 - SSM The starting motor of a car is turning too...Ch. 27 - Two resistors R1 and R2 may be connected either in...Ch. 27 - The circuit of Fig. 27-25 shows a capacitor, two...Ch. 27 - In Fig. 27-41, R1 = 10.0 , R2 = 20.0 , and the...Ch. 27 - In Fig. 27-76, R= 10 . what is the equivalent...Ch. 27 - a In Fig. 27-4a, show that the rate at which...Ch. 27 - In Fig. 27-77, the ideal batteries have emfs 1 =...Ch. 27 - Figure 27-28 shows a portion of a circuit through...Ch. 27 - Thermal energy is to be generated in a 0.10 ...Ch. 27 - Figure 27-29 shows three 20.0 resistors. Find the...Ch. 27 - A 120 V power line is protected by a 15 A fuse....Ch. 27 - Figure 27-63 shows an ideal battery of emf = 12...Ch. 27 - SSM A group of N identical batteries of emf and...Ch. 27 - SSM In Fig. 27-48, R1 = R2 = 10.0 , and the ideal...Ch. 27 - SSM In Fig. 27-66, the ideal battery has emf = 30...Ch. 27 - In Fig. 27-81, the ideal batteries have emfs 1 =...Ch. 27 - In Fig. 27-82, an ideal battery of emf = 12.0 V...Ch. 27 - The following table gives the electric potential...Ch. 27 - In Fig. 27-83, 1 = 6.00 V, 2 = 12.0 V, R1= 200 ...Ch. 27 - A three-way 120 V lamp bulb that contains two...Ch. 27 - In Fig. 27-84, R1 = R2 = 2.0 , R3 = 4.0 , R4 = 3.0...
Additional Science Textbook Solutions
Find more solutions based on key concepts
16. Suppliers of radioisotopically labeled compounds usually provide each product as a mixture Of labeled and u...
Biochemistry: Concepts and Connections (2nd Edition)
Explain all answers clearly, with complete sentences and proper essay structure if needed. An asterisk (*) desi...
Cosmic Perspective Fundamentals
You microscopically examine scrapings from a case of Acan-thamoeba keratitis. You expect to see a. nothing. b. ...
Microbiology: An Introduction
Calculate the lattice energy of CaCl2 using a Born-Haber cycle and data from Appendices F and L and Table 7.5. ...
Chemistry & Chemical Reactivity
55. For the reaction shown, find the limiting reactant for each of the initial quantities of reactants.
a.
b....
Introductory Chemistry (6th Edition)
2. Define equilibrium population. Outline the conditions that must be met for a population to stay in genetic e...
Biology: Life on Earth (11th Edition)
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Two capacitors with capacitance values C1 = 2000 ± 10 pF and C2 = 3000 ± 15 pF are connected in series. The voltage applied across this combination is ? = 5.00 ± 0.02 V. The percentage error in the calculation of the energy stored in this combination of capacitors isarrow_forwardIn the figure ₁ = 4.03 V, 2 = 0.838 V, R₁ = 5.400, R₂ = 1.660, R3 = 5.39 Q, and both batteries are ideal. What is the rate at which energy is dissipated in (a) R₁, (b) R₂, and (c) R3? What is the power of (d) battery 1 and (e) battery 2? www R₁ R₂ - 18₁ Rs Ef (a) Number i 1.35 Units W (b) Number 0.121 Units W (c) Number i 0.310 (d) Number i (e) Number i Units W Units W Units Warrow_forwardIn Figure 27-40, the resistances are R₁ = 1.20 2, R2 = 1.80 2, and the ideal batteries have emfs 1 = 2.0 V, and 2 = E3 = 5.0 V. R₁ R₁ a R₂ જ્જ R₁ 182 R₁ (a) What is the current through each battery? (Take upward to be positive.) battery 1 battery 2 battery 3 (b) What is the potential difference Va - Vb? Fig. 27-40arrow_forward
- In the figure battery 1 has emf 81= 14.0 V and internal resistance r = 0.040 Q and battery 2 has emf 82= 14.0 V and internal resistance r2 = %3D 0.018 Q. The batteries are connected in series with an external resistance R. (a) What R value makes the terminal-to-terminal potential difference of one of the batteries zero? (b) Which battery is that? Units (a) Number (b) battery 1arrow_forwardTwo batteries have the same emf E, but different internal resistances rị and r2 (r1 > r2) are connected in series to an external resistance R. (a) Find the value of R that makes the potential difference zero between the terminals of one battery. (b) Which battery is it?arrow_forwardAt the time the switch is closed in the circuit, the voltage across the paralleled capacitors is 50 V and the voltage on the C₁ capacitor is 40 V.(Figure 1) Take that C₁ - 250 nF C₂ = 870 nF and C₁-380 nF Figure C₁ +40 V ₁50 V₂ G 1=0 400,0 1 of 1 24 km 16 kn What percentage of the initial energy stored in the three capacitors is dissipated in the 24 kf2 resistor? Express your answer using two decimal places. VE] ΑΣΦ. It Ivec %diss-0.337 Submit Previous Answers Request Answer x Incorrect; Try Again; 5 attempts remaining Part B %diss - 0.035 Submit Previous Answers Request Answer What percentage of the initial energy stored in the three capacitors is dissipated in the 400 $2 resistor? Express your answer using two decimal places. ΕΠΙΑΣΦΗ! Ivec 4 * Incorrect; Try Again; 5 attempts remaining Part C %diss- Submit ⒸIE Request Answer → ? What percentage of the initial energy stored in the three capacitors is dissipated in the 16 kf2 resistor? Express your answer using two decimal places. [95]…arrow_forward
- A particular myelinated axon has nodes spaced 0.80 mm apart. The resistance between nodes is 20 MQ; the capacitance of each insulated segment is 1.2 pF. What is the conduction speed of a nerve impulse along this axon?arrow_forward(b) Consider a particular phone that has a battery rated at 2.500 mAh. The battery operates at a potential difference of 3.90 V. How much energy, in units of kilowatt-hours, is stored in a fully charged battery? 0.975-2 ✓kWh (c) If electricity costs $0.16 (or 16.0 cents) per kilowatt-hour, what is the value of the total amount of energy stored in this battery? Express your answer in cents (or 0.01 of a dollar). How can you relate the energy from part (b) to the cost per kilowatt-hour to find the total cost? (d) When the phone is idle (that is, turned on but not making calls or texts, using GPS, or running any power-hungry apps), it will operate continuously for 32.2 hours from a fully charged battery, until the battery runs out. How much average current does the phone draw while idle? Express your answer in milliamperes, MAarrow_forwardIn the figure battery 1 has emf 81 = 26.0 V and internal resistance r₁=0.024 and battery 2 has emf 82 = 26.0 V and internal resistance r₂ = 0.012 Q. The batteries are connected in series with an external resistance R. (a) What R value makes the terminal-to- terminal potential difference of one of the batteries zero? (b) Which battery is that? 8₁ Eg 11 12 Rarrow_forward
- While the switch is open, denote the energy stored in capacitor C1 with U0. After the switch has been closed for a long time, denote the energy stored in C1 with U1. Find the ratio U0/U1. Assume R1=1.87 ohm.arrow_forwardIn the figure & = 4.21 V, 82 = 0.945 V, R1 = 4.11 0, R2 = 2.36 0, R3 = 4.71 0, and both batteries are ideal. What is the rate at which energy is dissipated in (a) R1, (b) R2, and (c) R3? What is the power of (d) battery 1 and (e) battery 2? ww R2 R (a) Number i Units (b) Number i Units (c) Number i Units (d) Number i Units (e) Number i Unitsarrow_forwardImmediately after the switch is closed, the voltage across the 3uF capacitor is 1 MQ 45 V 3 µFarrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
DC Series circuits explained - The basics working principle; Author: The Engineering Mindset;https://www.youtube.com/watch?v=VV6tZ3Aqfuc;License: Standard YouTube License, CC-BY