Fundamentals of Physics Extended
10th Edition
ISBN: 9781118230725
Author: David Halliday, Robert Resnick, Jearl Walker
Publisher: Wiley, John & Sons, Incorporated
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 27, Problem 48P
GO In Fig. 27-53, the resistors have the values R1 = 7.00 Ω, R2 = 12.0 Ω, and R3 = 4.00 Ω, and the ideal battery’s emf is ℰ = 24.0 V. For what value of R4 will the rate at which the battery transfers energy to the resistors equal (a) 60.0 W, (b) the maximum possible rate Pmax, and (c) the minimum possible rate Pmin? What are (d) Pmax and (c) Pmin?
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
In the figure R1 = R2 = 10.22 0, and the ideal battery has emf g = 12.08 V. (a) What value of R3 maximizes the
rate at which the battery supplies energy and (b) what is that maximum rate?
R1
R
(a) Number
Units
Units
(b) Number
(a) In the figure what value must R have if the current in the circuit is to be 1.3 mA? Take ₁ = 2.7 V, 8₂ = 5.3 V, and r₁= r₂ = 3.9 Q. (b)
What is the rate at which thermal energy appears in R?
ww
www.
(b) Number
12₂
(a) Number 1992.2
i 2.6
Units
Units
Ω
W
<
In the figure R1= R2= 10.04 Q, and the ideal battery has emf = 12.15 V. (a) What value of R3 maximizes the
rate at which the battery supplies energy and (b) what is that maximum rate?
R1
Ry
Rs
(a) Number
i
Units
(b) Number
i
Units
W
Chapter 27 Solutions
Fundamentals of Physics Extended
Ch. 27 - a In Fig. 27-18a, with R1R2, is the potential...Ch. 27 - a In Fig. 27-18a, are resistors R1 and R3 in...Ch. 27 - You are to connect resistors R1 and R2, with R1R2,...Ch. 27 - In Fig. 27-19, a circuit consists of a battery and...Ch. 27 - For each circuit in Fig 27-20, are the resistors...Ch. 27 - Res-monster maze. In Fig. 27-21, all the resistors...Ch. 27 - A resistor R1 is wired to a battery, then resistor...Ch. 27 - What is the equivalent resistance of three...Ch. 27 - Two resistors are wired to a battery. a In which...Ch. 27 - Cap-monster maze. In Fig. 27-22, all the...
Ch. 27 - Initially, a single resistor, R1 is wired to a...Ch. 27 - After the switch in Fig. 27-15 is closed on point...Ch. 27 - Figure 27-24 shows three sections of circuit that...Ch. 27 - SSM WWW In Fig. 27-25, the ideal batteries have...Ch. 27 - In Fig. 27-26, the ideal batteries have emfs 1 =...Ch. 27 - ILW A car battery with a 12 V emf and an internal...Ch. 27 - GO Figure 27-27 shows a circuit of four resistors...Ch. 27 - A 5.0 A current is set up in a circuit for 6.0 min...Ch. 27 - A standard flashlight battery can deliver about...Ch. 27 - A wire of resistance 5.0 is connected to a...Ch. 27 - A certain car battery with a 12.0 V emf has an...Ch. 27 - a In electron-volts, how much work does an ideal...Ch. 27 - a In Fig. 27-28, what value must R have if the...Ch. 27 - SSM In Fig. 27-29, circuit section AB absorbs...Ch. 27 - Figure 27-30 shows a resistor of resistance R =...Ch. 27 - A 10-km-long underground cable extends east to...Ch. 27 - GO In Fig. 27-32a, both batteries have emf = 1.20...Ch. 27 - ILW The current in a single-loop circuit with one...Ch. 27 - A solar cell generates a potential difference of...Ch. 27 - SSM In Fig. 27-33, battery 1 has emf 1 = 12.0 V...Ch. 27 - In Fig. 27-9, what is the potential difference Vd ...Ch. 27 - A total resistance of 3.00 is to be produced by...Ch. 27 - When resistors 1 and 2 are connected in series,...Ch. 27 - Prob. 21PCh. 27 - Figure 27-34 shows five 5.00 resistors. Find the...Ch. 27 - In Fig. 27-35, R1 = 100 , R2 = 50 , and the ideal...Ch. 27 - In Fig. 27-36, R1 = R2 = 4.00 and R3 = 2.50 ....Ch. 27 - SSM Nine copper wires of length l and diameter d...Ch. 27 - Figure 27-37 shows a battery connected across a...Ch. 27 - Side flash. Figure 27-38 indicates one reason no...Ch. 27 - The ideal battery in Fig. 27-39a has emf = 6.0 V....Ch. 27 - In Fig. 27-40, R1 = 6.00 , R2 = 18.0 , and the...Ch. 27 - GO In Fig. 27-41, the ideal batteries have emfs 1...Ch. 27 - SSMGO In Fig. 27-42, the ideal batteries have emfs...Ch. 27 - Both batteries in Fig. 27-43a are ideal. Emf 1 of...Ch. 27 - GO In Fig. 27-44. the current in resistance 6 is...Ch. 27 - The resistances in Figs. 27-45a and b are all 6.0...Ch. 27 - GO In Fig. 27-46, = 12.0 V, R1, = 2000 , R2 =...Ch. 27 - GO In Fig. 27-47, 1 = 6.00 V, 2 = 12.0 V, R1, =...Ch. 27 - In Fig. 27-48, the resistances are R1 = 2.00 , R2...Ch. 27 - Figure 27-49 shows a section of a circuit. The...Ch. 27 - GO In Fig. 27-50, two batteries with an emf =...Ch. 27 - GO Two identical batteries of emf = 12.0 V and...Ch. 27 - In Fig. 27-41, 1 = 3.00 V, 2 = 1.00 V, R1 = 4.00 ,...Ch. 27 - In Fig. 27-52, an array of n parallel resistors is...Ch. 27 - You are given a number of 10 resistors, each...Ch. 27 - GO In Fig. 27-53, R1 = 100 , R2 = R3 = 50.0 , R4 =...Ch. 27 - ILW In Fig. 27-54, the resistances are R1 = 1.0 ...Ch. 27 - In Fig. 27-55a, resistor 3 is a variable resistor...Ch. 27 - SSM A copper wire of radius a = 0.250 mm has an...Ch. 27 - GO In Fig. 27-53, the resistors have the values R1...Ch. 27 - ILW a In Fig. 27-56, what current does the ammeter...Ch. 27 - In Fig. 27-57, R1 = 2.00R, the ammeter resistance...Ch. 27 - In Fig. 27-58, a voltmeter of resistance Rv= 300 ...Ch. 27 - A simple ohmmeter is made by connecting a 1.50V...Ch. 27 - In Fig. 27-14, assume that = 3.0 V, r = 100 , R1 =...Ch. 27 - When the lights of a car are switched on, an...Ch. 27 - In Fig. 27-61, Rsis to be adjusted in value by...Ch. 27 - In Fig. 27-62. a voltmeter of resistance Rv = 300 ...Ch. 27 - Switch S in Fig. 27-63 is closed at time t = 0, to...Ch. 27 - In an RC series circuit, emf = 12.0 V, resistance...Ch. 27 - SSM What multiple of the time constant gives the...Ch. 27 - A capacitor with initial charge q0 is discharge...Ch. 27 - ILW A 15.0 k resistor and a capacitor are...Ch. 27 - Figure 27-64 shows the circuit of a flashing lamp,...Ch. 27 - SSM WWWIn the circuit of Fig. 27-65, = 1.2 kV, C=...Ch. 27 - A capacitor with an initial potential difference...Ch. 27 - GO In Fig. 27-66. R1 = 10.0 k, R2 = 15.0 k, C=...Ch. 27 - Figure 27-67 display two circuits with a charged...Ch. 27 - The potential difference between the plates of a...Ch. 27 - A 1.0 F capacitor with an initial stored energy of...Ch. 27 - GO A 3.00 M resistor and a 1.00 F capacitor are...Ch. 27 - GO Each of the six real batteries in Fig. 27-68...Ch. 27 - In Fig. 27-69, R1 = 20.0 , R2 = 10.0 , and the...Ch. 27 - In Fig.27-70, the ideal battery has emf = 30.0 V,...Ch. 27 - SSM Wires A and B, having equal lengths of 40.0 m...Ch. 27 - What are the a size and b direction up or down of...Ch. 27 - Suppose that, while you are sitting in a chair,...Ch. 27 - GO In Fig. 27-72, the ideal batteries have emfs 1...Ch. 27 - SSM A temperature-stable resistor is made by...Ch. 27 - In Fig. 27-14, assume that = 5.0 V, r = 2.0 , R1...Ch. 27 - SSM An initially uncharged capacitor C is fully...Ch. 27 - In Fig. 27-73, R1 = 5.00 , R2 = 10.0 , R3 = 15.0 ,...Ch. 27 - In Fig. 27-5a, find the potential difference...Ch. 27 - In Fig. 27-8a, calculate the potential difference...Ch. 27 - SSM A controller on an electronic arcade game...Ch. 27 - An automobile gasoline gauge is shown...Ch. 27 - SSM The starting motor of a car is turning too...Ch. 27 - Two resistors R1 and R2 may be connected either in...Ch. 27 - The circuit of Fig. 27-25 shows a capacitor, two...Ch. 27 - In Fig. 27-41, R1 = 10.0 , R2 = 20.0 , and the...Ch. 27 - In Fig. 27-76, R= 10 . what is the equivalent...Ch. 27 - a In Fig. 27-4a, show that the rate at which...Ch. 27 - In Fig. 27-77, the ideal batteries have emfs 1 =...Ch. 27 - Figure 27-28 shows a portion of a circuit through...Ch. 27 - Thermal energy is to be generated in a 0.10 ...Ch. 27 - Figure 27-29 shows three 20.0 resistors. Find the...Ch. 27 - A 120 V power line is protected by a 15 A fuse....Ch. 27 - Figure 27-63 shows an ideal battery of emf = 12...Ch. 27 - SSM A group of N identical batteries of emf and...Ch. 27 - SSM In Fig. 27-48, R1 = R2 = 10.0 , and the ideal...Ch. 27 - SSM In Fig. 27-66, the ideal battery has emf = 30...Ch. 27 - In Fig. 27-81, the ideal batteries have emfs 1 =...Ch. 27 - In Fig. 27-82, an ideal battery of emf = 12.0 V...Ch. 27 - The following table gives the electric potential...Ch. 27 - In Fig. 27-83, 1 = 6.00 V, 2 = 12.0 V, R1= 200 ...Ch. 27 - A three-way 120 V lamp bulb that contains two...Ch. 27 - In Fig. 27-84, R1 = R2 = 2.0 , R3 = 4.0 , R4 = 3.0...
Additional Science Textbook Solutions
Find more solutions based on key concepts
Identify each of the following reproductive barriers as prezygotic or postzygotic a. One lilac species lives on...
Campbell Essential Biology (7th Edition)
Locate the nine abdominopelvic regions and the four abdominopelvic quadrants on yourself, and list some of the ...
Principles of Anatomy and Physiology
Your microbiology lab maintains reference bacterial cultures, which are regularly transferred to new nutrient a...
Laboratory Experiments in Microbiology (12th Edition) (What's New in Microbiology)
A 2.5L tank initially is empty, and we want to fill it with l0 g of ammonia. The ammonia comes from a line with...
Fundamentals Of Thermodynamics
Choose the best answer to each of the following. Explain your reasoning. Which of the following does not provid...
Cosmic Perspective Fundamentals
Suppose you are culturing a microorganism that produces enough lactic acid to kill itself in a few days. a. How...
Microbiology: An Introduction
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- In the figure R, = R2 = 10.25 Q, and the ideal battery has emf % = 12.01 V. (a) What value of R3 maximizes the rate at which the battery supplies energy and (b) what is that maximum rate? R (a) Number i Units (b) Number i Unitsarrow_forward(a) In the figure what value must R have if the current in the circuit is to be 1.1 mA? Take ε1 = 3.0 V, ε2 = 4.2 V, and r1 = r2 = 2.7 Ω. (b) What is the rate at which thermal energy appears in R?arrow_forwardA PHY-102 connected a RC circuit using a 3 MQ resistor, 1 µF capacitor, and 4 V battery. The rate at which the energy is being stored (in 10-6 w) in the capacitor at t = 1s is: O 1.13 O 0.95 O 3.82 O 1.08 2.74arrow_forward
- In the figure, suppose the switch has been closed for a length of time sufficiently long for the capacitor to become fully charged. For this circuit, R1 = 12.0 kΩ, R2 = 15.0 kΩ, R3 = 3.000 kΩ, C = 10.0 μF , and emf = 9.00 V. Find (d) the potential differance across R2. (e) the charge on the capacitor.arrow_forwardAssume that global lightning on the Earth constitutes a constant current of 1.00 kA between the ground and an atmospheric layer at potential 250 kV. (a) Find the power of terrestrial lightning. P = W (b) For comparison, find the power of sunlight falling on the Earth. Sunlight has an intensity of 1380 W/m² above the atmosphere. Sunlight falls perpendicularly on the circular projected area that the Earth presents to the Sun. P = Warrow_forwardA series electric circuit contains a resistor R, a capacitor C and a battery supplying a time-varyingelectromotive force V(t). The charge q on the capacitor therefore obeys the equation R(dq/dt) + (q/C) = V(t) Assuming that initially there is no charge on the capacitor, and given that = sinωt V(t) V0 , findthe charge on the capacitor as a function of time. [Hint: First, find an appropriate integrating factor.]arrow_forward
- A network of two identical capacitors, each with capacitance C, is charged through a resistor R using a battery with emf E. (a) What is the time constant, in terms of R and C, for the charging circuit if the two capacitors are in series? (b) In parallel? (c) For which capacitor network, series or parallel, does the voltage across the resistor become 1% of its initial value in a shorter time?arrow_forwardIn the figure ε1 = 2.45 V, ε2 = 0.803 V, R1 = 6.98 Ω, R2 = 1.53 Ω, R3 = 5.09 Ω, and both batteries are ideal. (a) What is the rate at which energy is dissipated in R1, R2, and R3? (b) What is the power of battery 1 and battery 2?arrow_forward(a) In the figure what value must R have if the current in the circuit is to be 0.84 mA? Take ε1 = 1.9 V, ε2 = 3.4 V, and r1 = r2 = 3.1 Ω. (b) What is the rate at which thermal energy appears in R?arrow_forward
- An initially uncharged capacitor with a capacitance of C = 5.00 µF is connected in series with a resistor with a resistance of R = 4.5 k. If this series combination of circuit elements is attached to an ideal battery with an emf of Ɛ = 450 V by means of a switch S that is closed at time t = 0, then answer the following questions. (a) What is the time constant of this circuit? (b) How long will it take for the capacitor to reach 75% of its final charge? (c) What is the final charge on the capacitor?arrow_forwardAn initially uncharged capacitor C is fully charged by a device of constant emf connected in series with a resistor R. (a) Show that the final energy stored in the capacitor is half the energy supplied by the emf device. (b) By direct integration of i2R over the charging time, show that the thermal energy dissipated by the resistor is also half the energy supplied by the emf device.arrow_forwardAssume that global lightning on the Earth constitutes a constant current of 1.00 kA between the ground and an atmospheric layer at potential 300 kV. (a) Find the power of terrestrial lightning. (b) For comparison, find the power of sunlight falling on the Earth. Sunlight has an intensity of 1 370 W/m2 above the atmosphere. Sunlight falls perpendicularly on the circular projected area that the Earth presents to the Sun.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- Glencoe Physics: Principles and Problems, Student...PhysicsISBN:9780078807213Author:Paul W. ZitzewitzPublisher:Glencoe/McGraw-Hill
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Glencoe Physics: Principles and Problems, Student...
Physics
ISBN:9780078807213
Author:Paul W. Zitzewitz
Publisher:Glencoe/McGraw-Hill
Ohm's law Explained; Author: ALL ABOUT ELECTRONICS;https://www.youtube.com/watch?v=PV8CMZZKrB4;License: Standard YouTube License, CC-BY