Concept explainers
The compound
Want to see the full answer?
Check out a sample textbook solutionChapter 24 Solutions
EP GENERAL CHEMISTRY-MOD.MASTERINGCHEM.
- An unknown compound contains only carbon, hydrogen, and oxygen. Combustion analysis of the compound gives mass percents of 31.57% C and 5.30% H. The molar mass is determined by measuring the freezing-point depression of an aqueous solution. A freezing point of 5.20C is recorded for a solution made by dissolving 10.56 g of the compound in 25.0 g water. Determine the empirical formula, molar mass, and molecular formula of the compound. Assume that the compound is a nonelectrolyte.arrow_forwardFreezing point depression is one means of determining the molar mass of a compound. The freezing point depression constant of benzene is 5.12 C/m. a. When a 0.503 g sample of the white crystalline dimer is dissolved in 10.0 g benzene, the freezing point of benzene is decreased by 0542 C. Verify that the molar mass of the dimer is 475 g/mol when determined by freezing point depression. Assume no dissociation of the dimer occurs. b. The correct molar mass of the dimer is 487 g/mol. Explain why the dissociation equilibrium causes the freezing point depression calculation to yield a lower molar mass for the dimer.arrow_forwardA sample of water contains 0.010 ppm lead ions, Pb2+. (a) Calculate the mass of lead ions per liter in this solution.(Assume the density of the water solution is 1.0 g/mL.) (b) Calculate the mass fraction of lead in ppb.arrow_forward
- Consider three test tubes. Tube A has pure water. Tube B has an aqueous 1.0 m solution of ethanol, C2H5OH. Tube C has an aqueous 1.0 m solution of NaCl. Which of the following statements are true? (Assume that for these solutions 1.0m=1.0M.) (a) The vapor pressure of the solvent over tube A is greater than the solvent pressure over tube B. (b) The freezing point of the solution in tube B is higher than the freezing point of the solution in tube A. (c) The freezing point of the solution in tube B is higher than the freezing point of the solution in tube C. (d) The boiling point of the solution in tube B is higher than the boiling point of the solution in tube C. (e) The osmotic pressure of the solution in tube B is greater than the osmotic pressure of the solution in tube C.arrow_forwardSodium chloride (NaCl) is commonly used to melt ice on roads during the winter. Calcium chloride (CaCl2) is sometimes used for this purpose too. Let us compare the effectiveness of equal masses of these two compounds in lowering the freezing point of water, by calculating the freezing point depression of solutions containing 200. g of each salt in 1.00 kg of water. (An advantage of CaCl2 is that it acts more quickly because it is hygroscopic, that is. it absorbs moisture from the air to give a solution and begin the process. A disadvantage is that this compound is more costly.)arrow_forwardA 0.109 mol/kg aqueous solution of formic acid, HCOOH, freezes at −0.210 °C. Calculate the percent dissociation of formic acid.arrow_forward
- The freezing point of 0.109 m aqueous formic acid is 0.210C. Formic acid, HCHO2, is partially dissociated according to the equation HCHO2(aq)H+(aq)+CHO2(aq) Calculate the percentage of HCHO2 molecules that are dissociated, assuming the equation for the freezing-point depression holds for the total concentration of molecules and ions in the solution.arrow_forwardList the following aqueous solutions in order of increasing melting point. (The last three are all assumed to dissociate completely into ions in water.) (a) 0.1 m sugar (b) 0.1 m NaCl (c) 0.08 m CaCl2 (d) 0.04 m Na2SO4arrow_forwardFor each of the following pairs of solutions, select the solution for which solute solubility is greatest. a. Ammonia gas in water with P = 1 atm and T = 50C Ammonia gas in water with P = 1 atm and T = 90C b. Carbon dioxide gas in water with P = 2 atm and T = 50C Carbon dioxide gas in water with P = 1 atm and T = 50C c. Table salt in water with P = 1 atm and T = 60C Table salt in water with P = 1 atm and T = 50C d. Table sugar in water with P = 2 atm and T = 40C Table sugar in water with P = 1 atm and T = 70Carrow_forward
- Refer to Figure 13.10 ( Sec. 13-4b) to determine whether these situations would result in an unsaturated, saturated, or supersaturated solution. 120. g RbCl is added to 100. g H2O at 50 °C. 30. g KCl is dissolved in 100. g H2O at 70 °C. 20. g NaCl is dissolved in 50. g H2O at 60 °C. Figure 13.10 Solubility of ionic compounds versus temperature.arrow_forwardCalcium chloride, CaCl2, has been used to melt ice from roadways. Given that the saturated solution is 32% CaCl2 by mass, estimate the freezing point.arrow_forwardThe following table lists the concentrations of the principal ions in seawater: (a) Calculate the freezing point of seawater. (b) Calculate the osmotic pressure of seawater at 25 C. What is the minimum pressure needed to purify seawater by reverse osmosis?arrow_forward
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning