
Concept explainers
(a)
Interpretation:
The pH of the solution should be determined.
Concept introduction:
A complex ion is formed when a metal ion reacts with a Lewis base in solution. This reaction is defined in terms of
The Metal ion which is positively charged functions as a Lewis acid and Lewis base or the ligand has one or more lone pairs of electrons. For example, Cu2+, which is a highly charged and small metal ion having a significant tendency to function as Lewis acids, consequently exhibiting the highest affinity to form complex ions.
The development of a complexion is a stepwise procedure, and every step has its equilibrium constant. When two of the equations are added together, the equilibrium constants multiply. The Equilibrium Constant reflects the concentration in a reaction, which is the molarity, written as moles per liter (M = mol/L).
The products of a reaction are present in the numerator, and the denominator has the reactants. The alphabets in upper-case are the molar concentrations of the reactants and products, and the alphabets in lower-case are the
This implies that the pH of any solution is the log of the hydrogen ion concentration of that solution. For the calculation of pH, the log of the hydrogen ion concentration is selected, and the sign is reversed to obtain the answer.
(b)
Interpretation:
The concentration of
Concept introduction:
A complex ion is formed when a metal ion reacts with a Lewis base in solution. This reaction is defined in terms of chemical equilibrium. A complexion comprises of a ligand and a metal ion as a result of an interaction of Lewis acid-base. The Metal ion which is positively charged functions as a Lewis acid and Lewis base or the ligand has one or more lone pairs of electrons. For example, Cu2+, which is a highly charged and small metal ion having a significant tendency to function as Lewis acids, consequently exhibiting the highest affinity to form complex ions.
The development of a complexion is a stepwise procedure, and every step has its equilibrium constant. When two of the equations are added together, the equilibrium constants multiply. The Equilibrium Constant reflects the concentration in a reaction, which is the molarity, written as moles per liter (M = mol/L).
The products of a reaction are present in the numerator, and the denominator has the reactants. The alphabets in upper-case are the molar concentrations of the reactants and products, and the alphabets in lower-case are the stoichiometric coefficients which balance the equation.
(c)
Interpretation:
Whether the pH of the solution can be maintained so that does not exceed 1×10-6 M.
Concept introduction:
A complex ion is formed when a metal ion reacts with a Lewis base in solution. This reaction is defined in terms of chemical equilibrium. A complexion comprises of a ligand and a metal ion as a result of an interaction of Lewis acid-base.
The Metal ion which is positively charged functions as a Lewis acid and Lewis base or the ligand has one or more lone pairs of electrons. For example, Cu2+, which is a highly charged and small metal ion having a significant tendency to function as Lewis acids, consequently exhibiting the highest affinity to form complex ions.
The development of a complexion is a stepwise procedure, and every step has its equilibrium constant. When two of the equations are added together, the equilibrium constants multiply. The Equilibrium Constant reflects the concentration in a reaction, which is the molarity, written as moles per liter (M = mol/L).
The products of a reaction are present in the numerator, and the denominator has the reactants. The alphabets in upper-case are the molar concentrations of the reactants and products, and the alphabets in lower-case are the stoichiometric coefficients which balance the equation.

Want to see the full answer?
Check out a sample textbook solution
Chapter 24 Solutions
EP GENERAL CHEMISTRY-MOD.MASTERINGCHEM.
- Determine if the following salt is neutral, acidic or basic. If acidic or basic, write the appropriate equilibrium equation for the acid or base that exists when the salt is dissolved in aqueous solution. If neutral, simply write only NR. Be sure to include the proper phases for all species within the reaction. NaN₃arrow_forwardCan I please get help with this?arrow_forwardCan I please get help with this?arrow_forward
- Use the Henderson-Hasselbalch equation to calculate pH of a buffer containing 0.050M benzoic acidand 0.150M sodium benzoate. The Ka of benzoic acid is 6.5 x 10-5arrow_forwardA. Draw the structure of each of the following alcohols. Then draw and name the product you would expect to produce by the oxidation of each. a. 4-Methyl-2-heptanol b. 3,4-Dimethyl-1-pentanol c. 4-Ethyl-2-heptanol d. 5,7-Dichloro-3-heptanolarrow_forwardWhat is the pH of a 1.0 L buffer made with 0.300 mol of HF (Ka = 6.8 × 10⁻⁴) and 0.200 mol of NaF to which 0.160 mol of NaOH were added?arrow_forward
- Can I please get help with this.arrow_forwardDetermine if the following salt is neutral, acidic or basic. If acidic or basic, write the appropriate equilibrium equation for the acid or base that exists when the salt is dissolved in aqueous solution. If neutral, simply write only NR. Be sure to include the proper phases for all species within the reaction. N₂H₅ClO₄arrow_forwardPlease help me with identifying these.arrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning





