Concept explainers
To use : synthetic division to divide

Answer to Problem 36E
Explanation of Solution
Given information :
Concept Involved:
For long division of polynomials by divisors of the form x - k, there is a shortcut
called synthetic division. The pattern for synthetic division of a cubic polynomial is
summarized below. (The pattern for higher-degree polynomials is similar.)
Synthetic Division (for a Cubic Polynomial): To divide
In case when we have a polynomial with a missing term, insert placeholders with zero coefficients for missing powers of the variable. Vertical pattern: Add terms in columns Diagonal pattern: Multiply results by k. This algorithm for synthetic division works only for divisors of the form x - k. Remember that |
The Division Algorithm : If
Calculation:
Set up the synthetic division to divide
When you set this up using synthetic division write -3 for the divisor
Bring down the leading coefficient to the bottom row.
Multiply -3 by the value just written on the bottom row. Place this value right beneath the next coefficient in the dividend:
Add the column created and write the sum in the bottom row:
Repeat until done. Multiply -3 by the value just written on the bottom row. Place this value right beneath the next coefficient in the dividend:
Add the column created and write the sum in the bottom row:
Repeat until done. Multiply -3 by the value just written on the bottom row. Place this value right beneath the next coefficient in the dividend
Add the column created and write the sum in the bottom row:
Repeat until done. Multiply -3 by the value just written on the bottom row. Place this value right beneath the next coefficient in the dividend
Add the column created and write the sum in the bottom row:
Repeat until done. Multiply -3 by the value just written on the bottom row. Place this value right beneath the next coefficient in the dividend
Add the column created and write the sum in the bottom row:
Write out the answer.The numbers in the last row make up your coefficients of the quotient as well as the remainder. The final value on the right is the remainder. Working right to left, the next number is your constant, the next is the coefficient for x , the next is the coefficient for x squared, and so on.
Conclusion:
By dividing the given polynomial
Chapter 2 Solutions
EBK PRECALCULUS W/LIMITS
- f'(x)arrow_forwardA body of mass m at the top of a 100 m high tower is thrown vertically upward with an initial velocity of 10 m/s. Assume that the air resistance FD acting on the body is proportional to the velocity V, so that FD=kV. Taking g = 9.75 m/s2 and k/m = 5 s, determine: a) what height the body will reach at the top of the tower, b) how long it will take the body to touch the ground, and c) the velocity of the body when it touches the ground.arrow_forwardA chemical reaction involving the interaction of two substances A and B to form a new compound X is called a second order reaction. In such cases it is observed that the rate of reaction (or the rate at which the new compound is formed) is proportional to the product of the remaining amounts of the two original substances. If a molecule of A and a molecule of B combine to form a molecule of X (i.e., the reaction equation is A + B ⮕ X), then the differential equation describing this specific reaction can be expressed as: dx/dt = k(a-x)(b-x) where k is a positive constant, a and b are the initial concentrations of the reactants A and B, respectively, and x(t) is the concentration of the new compound at any time t. Assuming that no amount of compound X is present at the start, obtain a relationship for x(t). What happens when t ⮕∞?arrow_forwardConsider a body of mass m dropped from rest at t = 0. The body falls under the influence of gravity, and the air resistance FD opposing the motion is assumed to be proportional to the square of the velocity, so that FD = kV2. Call x the vertical distance and take the positive direction of the x-axis downward, with origin at the initial position of the body. Obtain relationships for the velocity and position of the body as a function of time t.arrow_forwardAssuming that the rate of change of the price P of a certain commodity is proportional to the difference between demand D and supply S at any time t, the differential equations describing the price fluctuations with respect to time can be expressed as: dP/dt = k(D - s) where k is the proportionality constant whose value depends on the specific commodity. Solve the above differential equation by expressing supply and demand as simply linear functions of price in the form S = aP - b and D = e - fParrow_forwardFind the area of the surface obtained by rotating the circle x² + y² = r² about the line y = r.arrow_forwardarrow_back_iosSEE MORE QUESTIONSarrow_forward_ios
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning





