EBK CHEMICAL PRINCIPLES
8th Edition
ISBN: 9781305856745
Author: DECOSTE
Publisher: CENGAGE LEARNING - CONSIGNMENT
expand_more
expand_more
format_list_bulleted
Question
Chapter 21, Problem 43E
Interpretation Introduction
Interpretation: All the possible alcohols having the formula
Concept introduction: Ethers and alcohols are the structural isomers of each other. Alcohols are organic compounds represented by a general formula −OH. Alcohols are the compounds containing one or more hydroxyl groups connected via a single bond to the
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Gasohol is a mixture of 90% gasoline and 10% ethanol, CH 3CH 2OH. Ethanol is considered an environmentally friendly fuel additive because it can be made from a renewable source—sugarcane. Ethanol burns in air to form CO 2 and H 2O, and, like the combustion of alkanes, this reaction also releases a great deal of energy. Write a balanced equation for the combustion of ethanol.
How does the structure of an alcohol differ from an ether?
Describe how an aldehyde differs in structure from a ketone.
Thiols are compounds which resemble alcohols, except that the oxygen atom is replaced by a sulfur atom. Draw the analogous thiol for the four carbon alcohol in Table 1.
Describe the structural difference between carboxylic acids and esters.
Are ethers polar molecules?
Would you expect ethers to have higher or lower boiling points than alkanes (circle one)? Explain.
Pentane (an alkane) has a boiling point of 36 °C. Does the data agree with your prediction? explain why this could be the case
9. Classify alcohols as primary (1°), secondary (2°), or tertiary (3°).
Functional
Organic
family
1°, 2°, 3°
Formula
Compound name
group name
CH3-CH2-CH-CH2-OH
Alcohol group
CH3
CH,-CH,-0-CH,-CH,-CH,
CH,-CH2-C-H
CH2-CH,
CH3-C-CH2-CH2-CH3
OH
CH- CH- CH- CH- COOH
CH3
HO.
Chapter 21 Solutions
EBK CHEMICAL PRINCIPLES
Ch. 21 - Prob. 1ECh. 21 - Prob. 2ECh. 21 - Why are cyclopropane and cyclobutane so reactive?Ch. 21 - Prob. 4ECh. 21 - Prob. 5ECh. 21 - Prob. 6ECh. 21 - Prob. 7ECh. 21 - Name the five structural isomers of C6H14 .Ch. 21 - Draw the structural formula for each of the...Ch. 21 - Prob. 10E
Ch. 21 - Prob. 11ECh. 21 - Name each of the following cyclic alkanes, and...Ch. 21 - Prob. 13ECh. 21 - Prob. 14ECh. 21 - Prob. 15ECh. 21 - Prob. 16ECh. 21 - Prob. 17ECh. 21 - Prob. 18ECh. 21 - Prob. 19ECh. 21 - Prob. 20ECh. 21 - Prob. 21ECh. 21 - Prob. 22ECh. 21 - Prob. 23ECh. 21 - Prob. 24ECh. 21 - Prob. 25ECh. 21 - Prob. 26ECh. 21 - Prob. 27ECh. 21 - Prob. 28ECh. 21 - Prob. 29ECh. 21 - Prob. 30ECh. 21 - Name the following compounds.Ch. 21 - Prob. 32ECh. 21 - Prob. 33ECh. 21 - Prob. 34ECh. 21 - Prob. 35ECh. 21 - Prob. 36ECh. 21 - Prob. 37ECh. 21 - Prob. 38ECh. 21 - Prob. 39ECh. 21 - Prob. 40ECh. 21 - Prob. 41ECh. 21 - Draw structural formulas for each of the following...Ch. 21 - Prob. 43ECh. 21 - Prob. 44ECh. 21 - Prob. 45ECh. 21 - Prob. 46ECh. 21 - Prob. 47ECh. 21 - Prob. 48ECh. 21 - Prob. 49ECh. 21 - Prob. 50ECh. 21 - Prob. 51ECh. 21 - Prob. 52ECh. 21 - Prob. 53ECh. 21 - Prob. 54ECh. 21 - Prob. 55ECh. 21 - Prob. 56ECh. 21 - Prob. 57ECh. 21 - Prob. 58ECh. 21 - Prob. 59ECh. 21 - Give an example reaction that would yield the...Ch. 21 - Prob. 61ECh. 21 - Prob. 62ECh. 21 - Prob. 63ECh. 21 - Prob. 64ECh. 21 - Prob. 65ECh. 21 - Prob. 66ECh. 21 - Prob. 67ECh. 21 - Prob. 68ECh. 21 - Prob. 69ECh. 21 - Prob. 70ECh. 21 - Prob. 71ECh. 21 - Prob. 72ECh. 21 - Prob. 73ECh. 21 - Prob. 74ECh. 21 - Prob. 75ECh. 21 - Prob. 76ECh. 21 - Prob. 77ECh. 21 - Prob. 78ECh. 21 - Prob. 79ECh. 21 - Prob. 80ECh. 21 - Prob. 81ECh. 21 - Prob. 82ECh. 21 - Prob. 83ECh. 21 - Prob. 84ECh. 21 - Prob. 85ECh. 21 - Prob. 86ECh. 21 - Prob. 87ECh. 21 - Prob. 88ECh. 21 - Prob. 89ECh. 21 - Prob. 90ECh. 21 - Prob. 91ECh. 21 - Prob. 92ECh. 21 - Prob. 93ECh. 21 - Prob. 94ECh. 21 - Prob. 95ECh. 21 - Draw the structures of the tripeptides gly-ala-ser...Ch. 21 - Prob. 97ECh. 21 - Prob. 98ECh. 21 - What types of interactions can occur between the...Ch. 21 - Prob. 100ECh. 21 - Prob. 101ECh. 21 - Prob. 102ECh. 21 - Prob. 103ECh. 21 - Prob. 104ECh. 21 - Prob. 105ECh. 21 - Prob. 106ECh. 21 - Prob. 107ECh. 21 - Prob. 108ECh. 21 - Prob. 109ECh. 21 - Prob. 110ECh. 21 - Prob. 111ECh. 21 - Prob. 112ECh. 21 - Prob. 113ECh. 21 - Prob. 114ECh. 21 - Prob. 115ECh. 21 - Prob. 116ECh. 21 - Prob. 117ECh. 21 - Prob. 118ECh. 21 - Prob. 119ECh. 21 - Prob. 120ECh. 21 - Prob. 121ECh. 21 - Prob. 122ECh. 21 - Prob. 123ECh. 21 - Prob. 124ECh. 21 - Prob. 125ECh. 21 - Prob. 126ECh. 21 - Prob. 127AECh. 21 - Prob. 128AECh. 21 - Prob. 129AECh. 21 - Prob. 130AECh. 21 - Prob. 131AECh. 21 - Prob. 132AECh. 21 - Prob. 133AECh. 21 - Prob. 134AECh. 21 - Prob. 135AECh. 21 - Prob. 136AECh. 21 - Prob. 137AECh. 21 - Prob. 138AECh. 21 - Prob. 139AECh. 21 - Prob. 140AECh. 21 - Prob. 141AECh. 21 - Prob. 142AECh. 21 - Prob. 143AECh. 21 - Prob. 144AECh. 21 - Prob. 145AECh. 21 - Prob. 146AECh. 21 - Prob. 147AECh. 21 - Prob. 148AECh. 21 - Prob. 149AECh. 21 - Prob. 150AECh. 21 - Prob. 151AECh. 21 - Prob. 152AECh. 21 - Prob. 153AECh. 21 - Prob. 154AECh. 21 - Prob. 155AECh. 21 - Prob. 156AECh. 21 - Prob. 157AECh. 21 - Prob. 158AECh. 21 - Prob. 159AECh. 21 - Prob. 160AECh. 21 - Prob. 161AECh. 21 - Name each of the following cyclic alkanes.Ch. 21 - Prob. 163AECh. 21 - Prob. 164AECh. 21 - Prob. 165AECh. 21 - Prob. 166AECh. 21 - Prob. 167AECh. 21 - Prob. 168AECh. 21 - Prob. 169CPCh. 21 - Prob. 170CPCh. 21 - Prob. 171CPCh. 21 - Prob. 172CPCh. 21 - Prob. 173CPCh. 21 - Prob. 174CP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- Alcohols A, B and C all have the composition C4H 100. Molecules of alcohol A contain a branched carbon chain and can be oxidized to an aldehyde; molecules of alcohol B contain a linear carbon chain and can be oxidized to a ketone; and molecules of alcohol C can be oxidized to neither an aldehyde nor a ketone. Write the Lewis structures of these molecules.arrow_forwardWhat functional group distinguishes each of the following hydrocarbon derivatives? a. halohydrocarbons b. alcohols c. ethers d. aldehydes e. ketones f. carboxylic acids g. esters h. amines Give examples of each functional group. What prefix or suffix is used to name each functional group? What are the bond angles in each? Describe the bonding in each functional group. What is the difference between a primary, secondary, and tertiary alcohol? For the functional groups in ah, when is a number required to indicate the position of the functional group? Carboxylic acids are often written as RCOOH. What does COOH indicate and what does R indicate? Aldehydes are sometimes written as RCHO. What does CHO indicate?arrow_forwardConsider a sample of a hydrocarbon at 0.959 atm and 298 K. Upon combusting the entire sample in oxygen, you collect a mixture of gaseous carbon dioxide and water vapor at 1.51 atm and 375 K. This mixture has a density of 1.391 g/L and occupies a volume four times as large as that of the pure hydrocarbon. Determine the molecular formula of the hydrocarbon and name it.arrow_forward
- How does the structure of a cycloalkane differ from that of a straight-chain or branched-chain alkane?arrow_forwardAlcohols are very useful starting materials for the production of many different compounds. The following conversions, starting with 1-butanol, can be carried out in two or more steps. Show the steps (reactants/catalysts) you would follow to carry out the conversions, drawing the formula for the organic product in each step. For each step, a major product must be produced. (See Exercise 62.) (Hint: In the presence of H+, an alcohol is converted into an alkene and water. This is the exact reverse of the reaction of adding water to an alkene to form an alcohol.) a. 1-butanol butane b. 1-butanol 2-butanonearrow_forwardSummarize the nomenclature rules for alkanes, alkenes, alkynes, and aromatic compounds. Correct the following false statements regarding nomenclature of hydrocarbons. a. The root name for a hydrocarbon is based on the shortest continuous chain of carbon atoms. b. The suffix used to name all hydrocarbons is -ane. c. Substituent groups are numbered so as to give the largest numbers possible. d. No number is required to indicate the positions of double or triple bonds in alkenes and alkynes. e. Substituent groups get the lowest number possible in alkenes and alkynes. f. The ortho- term in aromatic hydrocarbons indicates the presence of two substituent groups bonded to carbon- 1 and carbon-3 in benzene.arrow_forward
- Your roommate, a chemistry major, claims to have synthesized the compound CH5 in the lab. Why is that not possible?arrow_forward4 What type of organic molecule is this? ОН ketone alcohol aldehyde organic acidarrow_forwardThe chemical formula C4H10O results in four alcohols and three ethers for a total of seven structuralisomers. Draw pairs of structural formulas for these molecules that illustrate positional and functional isomerism on a sheet of paper. You will be drawing a total of four formulas. Label each pair as positional or functional.arrow_forward
- To which family does this organic molecule belong? CH 3 CH 3 | N H₂C Alkane Amide Amine Alcohol CH 3arrow_forwardGiven the molecular formula C5H12O, give the structures (any form) and names of a primary, secondary, and tertiary alcohol, and an ether (ether can be named for EC).arrow_forwardWrite the structural formula for propylene glycol, 1,2-propanediol. Why is it classified as an alcohol? Is it a polar molecule? Should it be miscible with water?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub CoChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: Matter and Change
Chemistry
ISBN:9780078746376
Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl Wistrom
Publisher:Glencoe/McGraw-Hill School Pub Co
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
07 Physical Properties of Organic Compounds; Author: Mindset;https://www.youtube.com/watch?v=UjlSgwq4w6U;License: Standard YouTube License, CC-BY