![EBK CHEMICAL PRINCIPLES](https://www.bartleby.com/isbn_cover_images/9781305856745/9781305856745_largeCoverImage.jpg)
Concept explainers
(a)
Interpretation: The equilibrium constant for the given reaction if Ka for the carboxylic group of glycine is
Concept Introduction: Amino acids are the organic compounds which have two
The carboxylic acid group is acidic in nature and the acid dissociation constant can be written as Ka whereas amino group is basic in nature as it can accept H+ ion to form −NH3+ ion. The base dissociation constant can be written as Kb.
(a)
![Check Mark](/static/check-mark.png)
Answer to Problem 152AE
Explanation of Solution
Given:
Ka for the carboxylic group of glycine =
Kb for amino group =
The base dissociation of glycine can be written as:
This reaction is reverse of the equation (a). Thus the equilibrium constant for the reaction (a) can be written as:
(b)
Interpretation: The equilibrium constant for the given reaction if Ka for the carboxylic group of glycine is
Concept Introduction: Amino acids are the organic compounds which have two functional groups; amino group and carboxylic acid.
The carboxylic acid group is acidic in nature and the acid dissociation constant can be written as Ka whereas amino group is basic in nature as it can accept H+ ion to form −NH3+ ion. The base dissociation constant can be written as Kb.
(b)
![Check Mark](/static/check-mark.png)
Answer to Problem 152AE
Explanation of Solution
Given:
Ka for the carboxylic group of glycine =
Kb for amino group =
The acid dissociation of glycine can be written as:
This reaction is reverse of the equation (b). Thus the equilibrium constant for the reaction (b) can be written as:
(c)
Interpretation: Calculate the equilibrium constant for the given reaction if Ka for the carboxylic group of glycine is
Concept Introduction: Amino acids are the organic compounds which have two functional groups; amino group and carboxylic acid.
The carboxylic acid group is acidic in nature and the acid dissociation constant can be written as Ka whereas amino group is basic in nature as it can accept H+ ion to form −NH3+ ion. The base dissociation constant can be written as Kb.
(c)
![Check Mark](/static/check-mark.png)
Answer to Problem 152AE
Explanation of Solution
Given:
Ka for the carboxylic group of glycine =
Kb for amino group =
The acid dissociation of glycine can be written as:
In the given reaction dissociation of acid takes place.
Thus,
Want to see more full solutions like this?
Chapter 21 Solutions
EBK CHEMICAL PRINCIPLES
- A Standard Reference Material is certified to contain 94.6 ppm of an organic contaminant in soil. Your analysis gives values of 98.6, 98.4, 97.2, 94.6, and 96.2. Do your results differ from the expected results at the 95% confidence interval?arrow_forwardThe percentage of an additive in gasoline was measured six times with the following results: 0.13, 0.12, 0.16, 0.17, 0.20, and 0.11%. Find the 95% confidence interval for the percentage of additive.arrow_forwardExplain why this data led Rayleigh to look for and to discover Ar.arrow_forward
- 5) Confidence interval. Berglund and Wichardt investigated the quantitative determination of Cr in high-alloy steels using a potentiometric titration of Cr(VI). Before the titration, samples of the steel were dissolved in acid and the chromium oxidized to Cr(VI) using peroxydisulfate. Shown here are the results (as %w/w Cr) for the analysis of a reference steel. 16.968, 16.922, 16.840, 16.883, 16.887, 16.977, 16.857, 16.728 Calculate the mean, the standard deviation, and the 95% confidence interval about the mean. What does this confidence interval mean?arrow_forwardIn the Nitrous Acid Test for Amines, what is the observable result for primary amines? Group of answer choices nitrogen gas bubbles form a soluble nitrite salt yellow oily layer of nitrosoaminearrow_forward3. a. Use the MS to propose at least two possible molecular formulas. For an unknown compound: 101. 27.0 29.0 41.0 50.0 52.0 55.0 57.0 100 57.5 58.0 58.5 62.0 63.0 64.0 65.0 74.0 40 75.0 76.0 20 20 40 60 80 100 120 140 160 180 200 220 m/z 99.5 68564810898409581251883040 115.0 116.0 77404799 17417M 117.0 12.9 118.0 33.5 119.0 36 133 0 1.2 157.0 2.1 159.0 16 169.0 219 170.0 17 171.0 21.6 172.0 17 181.0 1.3 183.0 197.0 100.0 198.0 200. 784 Relative Intensity 2 2 8 ō (ppm) 6 2arrow_forward
- Solve the structure and assign each of the following spectra (IR and C-NMR)arrow_forward1. For an unknown compound with a molecular formula of C8H100: a. What is the DU? (show your work) b. Solve the structure and assign each of the following spectra. 8 6 2 ō (ppm) 4 2 0 200 150 100 50 ō (ppm) LOD D 4000 3000 2000 1500 1000 500 HAVENUMBERI -11arrow_forward16. The proton NMR spectral information shown in this problem is for a compound with formula CioH,N. Expansions are shown for the region from 8.7 to 7.0 ppm. The normal carbon-13 spec- tral results, including DEPT-135 and DEPT-90 results, are tabulated: 7 J Normal Carbon DEPT-135 DEPT-90 19 ppm Positive No peak 122 Positive Positive cus и 124 Positive Positive 126 Positive Positive 128 No peak No peak 4° 129 Positive Positive 130 Positive Positive (144 No peak No peak 148 No peak No peak 150 Positive Positive してしarrow_forward
- 3. Propose a synthesis for the following transformation. Do not draw an arrow-pushing mechanism below, but make sure to draw the product of each proposed step (3 points). + En CN CNarrow_forwardShow work..don't give Ai generated solution...arrow_forwardLabel the spectrum with spectroscopyarrow_forward
- ChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage LearningChemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage Learning
- Chemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningIntroductory Chemistry: A FoundationChemistryISBN:9781337399425Author:Steven S. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305957404/9781305957404_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781305079243/9781305079243_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133611097/9781133611097_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399074/9781337399074_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781133949640/9781133949640_smallCoverImage.gif)
![Text book image](https://www.bartleby.com/isbn_cover_images/9781337399425/9781337399425_smallCoverImage.gif)