Introduction To Genetic Analysis
12th Edition
ISBN: 9781319114787
Author: Anthony J.F. Griffiths, John Doebley, Catherine Peichel, David A. Wassarman
Publisher: W. H. Freeman
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 2, Problem 7P
Summary Introduction
To summarize: The process of meiotic division.
Introduction: Meiosis is a type of cellular reproduction, which results in the production of four haploid daughter cells (genetically unique) having half the number of chromosomes to that of the parent cells. The cells produced by this type of cellular reproduction participate in sexual reproduction.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
The diagram below shows a cell during Meiosis II:
a) What phase of Meiosis II is the cell in? How do you know?
b) Assuming all of the chromosomes present during Meiosis II are shown in the figure above, how many chromosomes (counting homologous pairs as two chromosomes) does a gamete from this organism have?
c) Draw the same cell during the same phase of Meiosis I. Label the elements
A diploid organism produces four gametes from one parent cell through the process of meiosis. Two gametes are found to have 7 chromosomes and two gametes are found to have 5 chromosomes.
A) Is this the expected number of chromosomes that would be found in each gamete following a normal cycle of meiosis? If yes, explain why. If no, explain why not and describe how the gamete situation described above occurred.
B) Determine the number of homologous chromosome pairs that the original parent cell contained, before meiosis began. Explain how you determined this value.
A diploid species has 3 pairs of chromosomes in its somatic cells. In males, the first pair is large submetacentric[1]; the second is medium acrocentric[2], and the third is small telocentric[3]. In females, the first two pairs are like those of the males while the third is large metacentric[4][5], with satellite4 Illustrate the karyograms (drawing/picture of the chromosome) of the following:
A triploid cell in females
tetrasomic cell in males
tetraploid cell in females
[1] submetacentric --centrosome is just above the middle of the chromosome
[2] acrocentric --centrosome is much higher location than submetacentric so that the “p” arm of the chromosome is much shorter than the q arm
[3] telocentric --the centromere is at the end of the chromosome
[4] metacentric --centrosome is in the middle of the chromosome; thus the “p-arm” and the “q-arm” or both arms of the chromosome are equal in length
[5] satellite-a constriction in an arm of a chromosome, aside…
Chapter 2 Solutions
Introduction To Genetic Analysis
Ch. 2 - Prob. 1PCh. 2 - Prob. 2PCh. 2 - Prob. 3PCh. 2 - Prob. 4PCh. 2 - Prob. 5PCh. 2 - Prob. 6PCh. 2 - Prob. 7PCh. 2 - Prob. 8PCh. 2 - Prob. 9PCh. 2 - Prob. 10P
Ch. 2 - Prob. 11PCh. 2 - Prob. 12PCh. 2 - Prob. 13PCh. 2 - Prob. 14PCh. 2 - Prob. 15PCh. 2 - Prob. 17PCh. 2 - Prob. 18PCh. 2 - Prob. 19PCh. 2 - Prob. 20PCh. 2 - Prob. 21PCh. 2 - Prob. 22PCh. 2 - Prob. 23PCh. 2 - Prob. 24PCh. 2 - Prob. 25PCh. 2 - Prob. 26PCh. 2 - Prob. 27PCh. 2 - Prob. 28PCh. 2 - Prob. 29PCh. 2 - Prob. 30PCh. 2 - Prob. 31PCh. 2 - Prob. 32PCh. 2 - Prob. 33PCh. 2 - Prob. 34PCh. 2 - Prob. 35PCh. 2 - Prob. 36PCh. 2 - Prob. 37PCh. 2 - Prob. 38PCh. 2 - Prob. 39PCh. 2 - Prob. 40PCh. 2 - Prob. 41PCh. 2 - Prob. 42PCh. 2 - Prob. 43PCh. 2 - Prob. 44PCh. 2 - Prob. 45PCh. 2 - Prob. 46PCh. 2 - Prob. 47PCh. 2 - Prob. 48PCh. 2 - Prob. 49PCh. 2 - Prob. 50PCh. 2 - Prob. 51PCh. 2 - Prob. 52PCh. 2 - Prob. 53PCh. 2 - Prob. 54PCh. 2 - Prob. 55PCh. 2 - Prob. 56PCh. 2 - Prob. 56.1PCh. 2 - Prob. 56.2PCh. 2 - Prob. 56.3PCh. 2 - Prob. 56.4PCh. 2 - Prob. 56.5PCh. 2 - Prob. 56.6PCh. 2 - Prob. 56.7PCh. 2 - Prob. 56.8PCh. 2 - Prob. 56.9PCh. 2 - Prob. 56.10PCh. 2 - Prob. 56.11PCh. 2 - Prob. 56.12PCh. 2 - Prob. 56.13PCh. 2 - Prob. 56.14PCh. 2 - Prob. 56.15PCh. 2 - Prob. 57PCh. 2 - Prob. 58PCh. 2 - Prob. 59PCh. 2 - Prob. 60PCh. 2 - Prob. 61PCh. 2 - Prob. 62PCh. 2 - Prob. 63PCh. 2 - Prob. 64PCh. 2 - Prob. 65PCh. 2 - Prob. 67PCh. 2 - Prob. 68PCh. 2 - Prob. 69PCh. 2 - Prob. 70PCh. 2 - Prob. 71PCh. 2 - Prob. 72PCh. 2 - Prob. 73PCh. 2 - Prob. 74PCh. 2 - Prob. 75PCh. 2 - Prob. 76PCh. 2 - Prob. 77PCh. 2 - Prob. 78PCh. 2 - Prob. 79PCh. 2 - Prob. 80PCh. 2 - Prob. 81PCh. 2 - Prob. 82PCh. 2 - Prob. 83PCh. 2 - Prob. 84PCh. 2 - Prob. 85PCh. 2 - Prob. 86PCh. 2 - Prob. 87PCh. 2 - Prob. 88PCh. 2 - Prob. 89PCh. 2 - Prob. 90PCh. 2 - Prob. 91PCh. 2 - Prob. 1GSCh. 2 - Prob. 2GSCh. 2 - Prob. 3GS
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, biology and related others by exploring similar questions and additional content below.Similar questions
- During metaphase I of meiosis, tetrads align along the metaphase plate independently of each other. Therefore, there is a random “shuffle” of maternal and paternal chromosomes in the resulting gametes.The following diagram demonstrates how this works in a diploid cell with four chromosomes (2n=4) . Because there are two pairs of chromosomes and each pair can align in one of two ways during metaphase I, the number of possible variations in the gametes produced is 22 or 4.For an organism that is , there are three pairs of chromosomes, so the number of possible variations in the gametes produced due to independent assortment in metaphase I is 23 or 8. In an organism with a haploid number of 7, how many possible combinations of maternal and paternal chromosomes can occur in its gametes? a. 72=49 b. 27=128 c.17=1 d. 214=16 384arrow_forwardDuring metaphase I of meiosis, tetrads align along the metaphase plate independently of each other. Therefore, there is a random “shuffle” of maternal and paternal chromosomes in the resulting gametes.The following diagram demonstrates how this works in a diploid cell with four chromosomes (2n=4) . Because there are two pairs of chromosomes and each pair can align in one of two ways during metaphase I, the number of possible variations in the gametes produced is 22 or 4.For an organism that is , there are three pairs of chromosomes, so the number of possible variations in the gametes produced due to independent assortment in metaphase I is 23 or 8. In an organism with a haploid number of 2n=6 , how many possible combinations of maternal and paternal chromosomes can occur in its gametes? a. 72=49 b. 27=128 c.17=1 d. 214=16 384arrow_forwardMitosis produces 2 daughter cells that are identical to the starting cell. Explain how meíosis is different using this diagram to help you. 1) How many cells are created through meiosis? 2) Describe the chromosomes in each gamete at the end of meiosis? Are the set of chromosomes in a gamete identical to the starting cell like they are in mitosis? Are there the same number of chromosomes in each gamete as the starting cell? Starting cell's chromosomes: 1А, 1B, 2A, 2B Interphase After the S phase of interphase: 4 pairs of sister chromatids 1A 1A 1B 1B 2A 2A 2B 2B Meiosis has 2 rounds of cell division 1A, 1A, 1B, 1B, 2A 2B 2A 2B tv MacBook Air DII DD 80 888 F9 F10 F6 F7 F8 F4 F3 * #3 2$ % & 8 9 3 4 E T. Y F G J K * CO Rarrow_forward
- During metaphase I of meiosis, tetrads align along the metaphase plate independently of each other. Therefore, there is a random “shuffle” of maternal and paternal chromosomes in the resulting gametes.The following diagram demonstrates how this works in a diploid cell with four chromosomes . Because there are two pairs of chromosomes and each pair can align in one of two ways during metaphase I, the number of possible variations in the gametes produced is , or .For an organism that is , there are three pairs of chromosomes, so the number of possible variations in the gametes produced due to independent assortment in metaphase I is , or . In an organism with a haploid number of , how many possible combinations of maternal and paternal chromosomes can occur in its gametes? Select one: a. 72=49 b. 27=128 c.17=1 d. 214=16 384arrow_forwardSuppose there are two genes on two different chromosomes, one gene called G and the other called D. An individual has the genotype GgDd. Which of the following drawings correctly shows cells in this individual after DNA replication but before cell division of the first meiosis? Assume no recombination/crossing-over occurs between the chromosomes. a) G|GgTg 11 11 D--Da-d 1 N Gg Gg D-d Dd b) d) G+gGg 7/2007 D-d D-d GG gtg DD ddarrow_forwardFor an organism with 3 pairs of chromosomes (6 total chromosomes, 2n = 6), draw chromosome diagrams for the following phases of meiosis: prophase I, metaphase I, anaphase I, telophase I, prophase II, metaphase II, anaphase II & telophase II. Be sure to draw the correct number of chromosomes and the correct number of chromatids per chromosome. Use a different color to represent each chromosome type (for example, use blue to indicate all copies of chromosome 1, red for all copies of chromosome 2, and green for all copies of chromosome 3).arrow_forward
- If an organism has 15 pairs of homologous chromosomes, how many chromosomes will each daughter cell have after telophase of mitosis? In this same organism, how many chromosomes will each daughter cell have after telophase II of meiosis?arrow_forwardIf the amount (mass) of DNA in a diploid cell during G1 phase prior to meiosis I is 8 pg (picograms), how much DNA would be present in a daughter cell immediately following: A) meiosis I? B) meiosis II? (for your information, this cell will function as a gamete) HINT: Go through the process of meiosis one step at a time. DNA replication would double the amount of DNA in the cell, cell division divides the DNA into two daughter cells.arrow_forwardConsider a diploid cell that contains 7 pairs of chromosomes. Each pair includes a maternal and a paternal member (for example: AP pair) or AP B ^ n * B ^ p (two pairs). How many different combinations of chromatids are possible during the early phases of anaphase in meiosis II?arrow_forward
- helparrow_forwardimagine a giraffe whose diploid is 30. A) what # of chromosomes will be present in a somatic cell at prophase of mitosis? B) what will be the # of chromosomes present in a somatic cell at prophase 2 of meiosis?arrow_forwardAn individual heterozygous for a reciprocal translocation possesses the following chromosomes: A B • C D E F G A B • C D V W X R S • T U E F G R S • T U V W X Q. Diagram the alternate, adjacent-1, and adjacent-2 segregation patterns in anaphase I of meiosis.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Human Heredity: Principles and Issues (MindTap Co...BiologyISBN:9781305251052Author:Michael CummingsPublisher:Cengage LearningBiology (MindTap Course List)BiologyISBN:9781337392938Author:Eldra Solomon, Charles Martin, Diana W. Martin, Linda R. BergPublisher:Cengage Learning
Human Heredity: Principles and Issues (MindTap Co...
Biology
ISBN:9781305251052
Author:Michael Cummings
Publisher:Cengage Learning
Biology (MindTap Course List)
Biology
ISBN:9781337392938
Author:Eldra Solomon, Charles Martin, Diana W. Martin, Linda R. Berg
Publisher:Cengage Learning
Mitochondrial mutations; Author: Useful Genetics;https://www.youtube.com/watch?v=GvgXe-3RJeU;License: CC-BY