Consider the differential equation
Where f(x) is the input and is a function of the output, x. If
Want to see the full answer?
Check out a sample textbook solutionChapter 2 Solutions
Control Systems Engineering
- 4arrow_forward2. In the following electrical circuit system, where R is the resistance, L is the inductance, and C is the capacitance. The input variable is the applied voltage the output variable is the voltage Find the transfer function of the 11 L ic İR OR 10arrow_forwardHarmonic oscillators. One of the simplest yet most important second-order, linear, constant- coefficient differential equations is the equation for a harmonic oscilator. This equation models the motion of a mass attached to a spring. The spring is attached to a vertical wall and the mass is allowed to slide along a horizontal track. We let z denote the displacement of the mass from its natural resting place (with x > 0 if the spring is stretched and x 0 is the damping constant, and k> 0 is the spring constant. Newton's law states that the force acting on the oscillator is equal to mass times acceleration. Therefore the differential equation for the damped harmonic oscillator is mx" + bx' + kr = 0. (1) k Lui Assume the mass m = 1. (a) Transform Equation (1) into a system of first-order equations. (b) For which values of k, b does this system have complex eigenvalues? Repeated eigenvalues? Real and distinct eigenvalues? (c) Find the general solution of this system in each case. (d)…arrow_forward
- Please draw truth table #4arrow_forwardPage 8/5 Q4: (M4) LE Velocity: V [km/hr] Wavelength: L [m] M k y(t) Model Height: H [m] The figure above shows a model of a person riding a unicycle that contains a spring under its seat. The spring constant is k = 10,600 N/m. Assume that damping is minimal, the wheel of the unicycle has no mass and is not a spring, the unicyle always stays perfectly upright, and the person is represented by a rigid mass M = kg. a) When the unicycle is being ridden at speed V = 10 km/hr over the sinusoidal bumpy terrain shown above, with bump spacing L=0.6 m and bump height H 0.05 m, what will be the steady-state peak-to-peak amplitude of the motion y(t) [m] of the person riding the unicycle? b) Recalculate the steady-state peak-to-peak amplitude of the motion for 2.5, 5, and 20 km/hr. Will the rider have difficulty reaching speeds above 5 km/hr?arrow_forwardPleasearrow_forward
- In matlabarrow_forwardPls help me find this pls plsarrow_forwardFor the mechanical translation system below, find the force-voltage analogy and force-current analogy. Use the following values. K1 = 2 fv, = 1/2 M1 = 1+a %3D K2 = 2 fv2 = 4+b M2 = 5 K3 = 3+c fv3 = 3 a = 0 where a = 3rd digit of your student number %3D b = 5th digit of your student number b =7 C = 7th digit of your student number C = 5 For reference, the 1st digit of your student number is the leftmost number in your student number. Indicate your student number when solving problems.arrow_forward
- 8arrow_forward1 An object of mass 125 kg is released from rest from a boat into the water and allowed to sink. While gravity is pulling the object down, a buoyancy force of times the weight of the object is pushing the object up (weight = mg). If we assume that water 40 resistance exerts a force on the object that is proportional to the velocity of the object, with proportionality constant 10 N-sec/m, find the equation of motion of the object. After how many seconds will the velocity of the object be 90 m/sec? Assume that the acceleration due to gravity is 9.81 m/ sec2. Find the equation of motion of the object. X(t) = %3Darrow_forward3 5. `x, X, -3 6 [3 0 0 6 6 Determine the steady-state respanse et the System given above.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY