Control Systems Engineering
7th Edition
ISBN: 9781118170519
Author: Norman S. Nise
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 2, Problem 6RQ
What do we call the
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
EXAMPLE --
Consider the following transfer function:
B(s) 2 + 5 + 3s + 6
+ 65+ 11s +6
A(s)
Reduce the block diagram to a single transfer function.
Please Help with this question. Show clear steps and highlight the answers.
Chapter 2 Solutions
Control Systems Engineering
Ch. 2 - Prob. 1RQCh. 2 - Prob. 2RQCh. 2 - Prob. 3RQCh. 2 - Define the transfer function.Ch. 2 - Prob. 5RQCh. 2 - What do we call the mechanical equations written...Ch. 2 - If we understand the form the mechanical equations...Ch. 2 - Why do transfer functions for mechanical networks...Ch. 2 - What function do gears perform?Ch. 2 - What are the component parts of the mechanical...
Ch. 2 - The motor’s transfer function relates armature...Ch. 2 - Summarize the steps taken to linearize a nonlinear...Ch. 2 - Prob. 1PCh. 2 - Prob. 2PCh. 2 - Prob. 3PCh. 2 - Prob. 4PCh. 2 - Prob. 5PCh. 2 - Prob. 6PCh. 2 - Prob. 7PCh. 2 - A system is described by the following...Ch. 2 - For each of the following transfer functions,...Ch. 2 - Write the differential equation for the system...Ch. 2 - Write the differential equation that is...Ch. 2 - Prob. 12PCh. 2 - Use MATLAB to generate the MATLAB ML transfer...Ch. 2 - Repeat Problem 13 for the MATLAB following...Ch. 2 - Use MATLAB to generate the partial fraction...Ch. 2 - Use MATLAB and the Symbolic Math Symbolic Math...Ch. 2 - Prob. 17PCh. 2 - Prob. 18PCh. 2 - Prob. 19PCh. 2 - Repeat Problem 19 using nodal equations. [Section:...Ch. 2 - Prob. 22PCh. 2 - Prob. 23PCh. 2 - Prob. 24PCh. 2 - Prob. 25PCh. 2 - Prob. 26PCh. 2 - Prob. 27PCh. 2 - Prob. 28PCh. 2 - Prob. 29PCh. 2 - Write, but do not solve, the equations of motion...Ch. 2 - For the unexcited (no external force applied)...Ch. 2 - For each of the rotational mechanical systems...Ch. 2 - For the rotational mechanical system shown in...Ch. 2 - Find the transfer function, 1sTs , for the system...Ch. 2 - For the rotational mechanical system with gears...Ch. 2 - For the rotational system shown in Figure P2.21,...Ch. 2 - Prob. 37PCh. 2 - Find the transfer function, Gs=4s/Ts , for the...Ch. 2 - For the rotational system shown in Figure P2.24,...Ch. 2 - Prob. 40PCh. 2 - Given the rotational system shown in Figure P226,...Ch. 2 - In the system shown in Figure P2.27, the inertia,...Ch. 2 - Prob. 43PCh. 2 - Given the combined translational and rotational...Ch. 2 - Prob. 45PCh. 2 - The motor whose torque-speed characteristics are...Ch. 2 - A dc motor develops 55 N-m of torque at a speed of...Ch. 2 - 48. In this chapter, we derived the transfer...Ch. 2 - Prob. 49PCh. 2 - Find the series and parallel analogs for the...Ch. 2 - Find the series and parallel analogs for the...Ch. 2 - A system’s output, c, is related to the system’s...Ch. 2 - Prob. 53PCh. 2 - Consider the differential equation...Ch. 2 - 55. Many systems are piecewise linear. That is,...Ch. 2 - For the translational mechanical system with a...Ch. 2 - 57. Enzymes are large proteins that biological...Ch. 2 - Prob. 58PCh. 2 - Figure P2.36 shows a crane hoisting a load....Ch. 2 - 60. In 1978, Malthus developed a model for human...Ch. 2 - 61. In order to design an underwater vehicle that...Ch. 2 - 62. The Gompertz growth model is commonly used to...Ch. 2 - A muscle hanging from a beam is shown in Figure...Ch. 2 - A three-phase ac/dc converter supplies dc to a...Ch. 2 - Prob. 65P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- HW # 2-3 : Consider the following inverted pendulum. a) Obtain the differential equation describing the system. e sin 0 b) Find the transfer function. m c) Obtain the state equation in terms of vector-matrix form. e cos 0 mg the center of gravity of the pendulum as (xG, YG). Then P XG = x + l sin 0 M YG I cos e %3Darrow_forwardPlease Help with this question. Show clear steps and highlight the answers.arrow_forwardGiven the following transfer function of the system: T(s): Find r(t) if f(t) = 8(t). H Search (s+1) (s+3) 99+arrow_forward
- Consider the mechanical system shown below. The system is at rest for t < 0. The input force u is given at t = 0. The displacement x is the output of the system and is measured from the equilibrium position. Obtain the transfer function. You have to give the details of your work. a) Set up the governing equations for the system. b) Obtain the transfer function (s)/u(s) c) Use Force-Voltage analogy to get the electrical equivalent system equations. k3 m "1arrow_forward2. For the system below, find the transfer function fromfi to x (driving point receptance) and from f. to ä, (driving point accelerance). What is the acceleration response of mass m, if m; = 2 kg, m; = 4 kg, k, = 40 N/m, k =100 N/m, and k; = 200 N/m, fi(t) = 20 cos(3t) N and f:(r) = 0? WW m, WW m Warrow_forwardFind the transfer function X(s)/G(s) of the block diagram below.arrow_forward
- Translational mechanical systems with the image values I need to get free body diagram Get the input-output model Get the Transfer Function Get representation in State Variablesarrow_forwardQ5: Given the rotational system shown in below, find the transfer function G(s)= 01(s)/T(s) D K2 Please help ASAP. Pls show all steps and calculations. Make sure to find theta1(s)/T(s)arrow_forwardSolve using Laplace. All I need is the steps to find the Laplace Transfer Function.arrow_forward
- Derive transfer function for the following mechanical system: x(t) - Laplace transforms. f(t) M Spring K Damper B. Referencearrow_forward02(s). T(s) Find the transfer function G(s) Tt) 1 N-m/rad 1 N-m/rad I kg-m? 1 N-m-s/rad 1 N-m-s/rad Figure: Rotational mechanical system.arrow_forwardConsider the following rotational mechanical system, a. Apply the "by inspection" method in Laplace domain to write the system of equations that represents the dynamics of the system b. Solve for the output variable q1(s). Use Cramer's rule or the substitution method to solve for the output variable q1(s). c. Give the transfer function G(s) = 91(s)/T(s) 0₁ (1) T(1) J1 82(1) oför J2 oooo K₁ K2 oooo Darrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Ficks First and Second Law for diffusion (mass transport); Author: Taylor Sparks;https://www.youtube.com/watch?v=c3KMpkmZWyo;License: Standard Youtube License