Control Systems Engineering
7th Edition
ISBN: 9781118170519
Author: Norman S. Nise
Publisher: WILEY
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 51P
Find the series and parallel analogs for the rotational
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
38. Given the rotational system shown in Figure P2.24,
find the transfer function, G(s) = 06(s)/01(s).
[Section: 2.7]
P4.8
Determine the rotational speed of link 3 of the mechanism given in figure P4.8 for the position shown.
Use a complex numbers approach
Find the transfer function, G(s) = X3(s)/F(s), for the translational mechanical system shown in Figure P2.13.
Step-by-step procedure is highly appreciated.
Chapter 2 Solutions
Control Systems Engineering
Ch. 2 - Prob. 1RQCh. 2 - Prob. 2RQCh. 2 - Prob. 3RQCh. 2 - Define the transfer function.Ch. 2 - Prob. 5RQCh. 2 - What do we call the mechanical equations written...Ch. 2 - If we understand the form the mechanical equations...Ch. 2 - Why do transfer functions for mechanical networks...Ch. 2 - What function do gears perform?Ch. 2 - What are the component parts of the mechanical...
Ch. 2 - The motor’s transfer function relates armature...Ch. 2 - Summarize the steps taken to linearize a nonlinear...Ch. 2 - Prob. 1PCh. 2 - Prob. 2PCh. 2 - Prob. 3PCh. 2 - Prob. 4PCh. 2 - Prob. 5PCh. 2 - Prob. 6PCh. 2 - Prob. 7PCh. 2 - A system is described by the following...Ch. 2 - For each of the following transfer functions,...Ch. 2 - Write the differential equation for the system...Ch. 2 - Write the differential equation that is...Ch. 2 - Prob. 12PCh. 2 - Use MATLAB to generate the MATLAB ML transfer...Ch. 2 - Repeat Problem 13 for the MATLAB following...Ch. 2 - Use MATLAB to generate the partial fraction...Ch. 2 - Use MATLAB and the Symbolic Math Symbolic Math...Ch. 2 - Prob. 17PCh. 2 - Prob. 18PCh. 2 - Prob. 19PCh. 2 - Repeat Problem 19 using nodal equations. [Section:...Ch. 2 - Prob. 22PCh. 2 - Prob. 23PCh. 2 - Prob. 24PCh. 2 - Prob. 25PCh. 2 - Prob. 26PCh. 2 - Prob. 27PCh. 2 - Prob. 28PCh. 2 - Prob. 29PCh. 2 - Write, but do not solve, the equations of motion...Ch. 2 - For the unexcited (no external force applied)...Ch. 2 - For each of the rotational mechanical systems...Ch. 2 - For the rotational mechanical system shown in...Ch. 2 - Find the transfer function, 1sTs , for the system...Ch. 2 - For the rotational mechanical system with gears...Ch. 2 - For the rotational system shown in Figure P2.21,...Ch. 2 - Prob. 37PCh. 2 - Find the transfer function, Gs=4s/Ts , for the...Ch. 2 - For the rotational system shown in Figure P2.24,...Ch. 2 - Prob. 40PCh. 2 - Given the rotational system shown in Figure P226,...Ch. 2 - In the system shown in Figure P2.27, the inertia,...Ch. 2 - Prob. 43PCh. 2 - Given the combined translational and rotational...Ch. 2 - Prob. 45PCh. 2 - The motor whose torque-speed characteristics are...Ch. 2 - A dc motor develops 55 N-m of torque at a speed of...Ch. 2 - 48. In this chapter, we derived the transfer...Ch. 2 - Prob. 49PCh. 2 - Find the series and parallel analogs for the...Ch. 2 - Find the series and parallel analogs for the...Ch. 2 - A system’s output, c, is related to the system’s...Ch. 2 - Prob. 53PCh. 2 - Consider the differential equation...Ch. 2 - 55. Many systems are piecewise linear. That is,...Ch. 2 - For the translational mechanical system with a...Ch. 2 - 57. Enzymes are large proteins that biological...Ch. 2 - Prob. 58PCh. 2 - Figure P2.36 shows a crane hoisting a load....Ch. 2 - 60. In 1978, Malthus developed a model for human...Ch. 2 - 61. In order to design an underwater vehicle that...Ch. 2 - 62. The Gompertz growth model is commonly used to...Ch. 2 - A muscle hanging from a beam is shown in Figure...Ch. 2 - A three-phase ac/dc converter supplies dc to a...Ch. 2 - Prob. 65P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 2.1) A]: Find the transfer function of the following mechanical system given in Fig. (1). k2 u2 m2 y2 Y Fig.(1) wwarrow_forwardFind the transfer function, G(s) = Xs(s)/F(s), for the translational mechanical network shown in Figure P2.10arrow_forward2. (25) For the rotational system shown in the fig- ure, write the equations of motion from which the transfer function, G(s) = 01(8)/T(s), can be found.arrow_forward
- Please Help with this question. Show clear steps and highlight the answers.arrow_forward29. Write, but do not solve, the equations of motion for the translational mechanical system shown in Figure P2.15. [Section: 2.5] K = 5 N/m M3 = 3 kg fy =2 N-s/m- fvz = 3 N-s/m K2 = 4 N/m o R) K3 = 4 N/m M, =4 kg- M2 = 5 kg fv, = 2 N-s/m Frictionless x1(1) FIGURE P2.15arrow_forward3. In this problem, you are going to analyze the dynamics of a rotational mechanical system shown in Figure below (this is also covered in Lecture Notes #3 of M. Mert Ankarali [1]). In this system input the external torque t(t), and output is the angular velocity of the load wL(t). JR WR OR K JL OL WL T DL DR The state-space representation of this system is provided in the Lecture Notes #3 [1]. Find the transfer function of the dynamical system. Find another (minimal) state-space representation for the system.arrow_forward
- 26. For the system shown in Figure P4.8, a step torque is applied at 01 (t). Find a. The transfer function, G(s) = 02(s)/T(s). b. The percent overshoot, settling time, and peak time for 02(t). [Section: 4.6] T(t) 01(1) 02(1) ff 1.07 kg-m2 1.53 N-m-s/rad 1.92 N-m/rad FIGURE P4.8arrow_forwardPlease help me doing part B all I need help with is too make the derivation of equations of motion, and derivation of the state equations, and that will do for part B if you could help me with this it would make my life alot easier, and no matlab is not necessary for this.arrow_forwardJ 1. Using Lagrangian mechanics, derive the equations of motion of a cart with two tires under the cart shown in Figure P.4.1.arrow_forward
- 4. The pitch (angular motion) and bounce (up-down linear motion) of a motor vehicle is shown in Figure Q4. Write down the two equations of motion of the vehicle and hence find its frequency equation. (a) (b) Assume that the mass of the vehicle is 1,000 kg, radius of gyration is 0.9 m, spring stiffnesses kr = 18 kN/m and kr = 22 kN/m, distances Iı = 1.0 m and l2 = 1.5 m, determine the two natural frequencies and mode shapes of the system. Bounce Pitch C.G.I Figure Q4arrow_forwardPlease solve with stepsarrow_forwardA mechanical system with a rotating wheel of mass ?w (uniform mass distribution) is shown in Figure Q1. Springs and dampers are connected to wheel using a flexible cable without skip on wheel. (a) Determine all the mathematical modeling equations of the system for the translational and rotational motion. (b) Using the result in Q1(a), determine the translational motion equation in term of ? as a function of input motion ?. (c) By referring to standard second-order system form, determine the expressions for natural frequency and damping ratio of the system.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
The Robot Revolution: The New Age of Manufacturing | Moving Upstream; Author: Wall Street Journal;https://www.youtube.com/watch?v=HX6M4QunVmA;License: Standard Youtube License