Concept explainers
Passage of an electric current through a long conducting rod of radius
and convection cooling is provided by an adjoining fluid.
For steady-state conditions, write appropriate forms of the heat equations for the rod and cladding. Express appropriate boundary conditions for the solution of these equations.
Want to see the full answer?
Check out a sample textbook solutionChapter 2 Solutions
Fundamentals of Heat and Mass Transfer
- 1.63 Liquid oxygen (LOX) for the space shuttle is stored at 90 K prior to launch in a spherical container 4 m in diameter. To reduce the loss of oxygen, the sphere is insulated with superinsulation developed at the U.S. National Institute of Standards and Technology's Cryogenic Division; the superinsulation has an effective thermal conductivity of 0.00012 W/m K. If the outside temperature is on the average and the LOX has a heat of vaporization of 213 J/g, calculate the thickness of insulation required to keep the LOX evaporation rate below 200 g/h.arrow_forwardA section of a composite wall with the dimensions shown below has uniform temperatures of 200C and 50C over the left and right surfaces, respectively. If the thermal conductivities of the wall materials are: kA=70W/mK,kB=60W/mK, kC=40W/mK, and kP=20W/mK, determine the rate of heat transfer through this section of the wall and the temperatures at the interfaces. Repeat Problem 1.34, including a contact resistance of 0.1 K/W at each of the interfaces.arrow_forwardHeat is generated uniformly in the fuel rod of a nuclear reactor. The rod has a long, hollow cylindrical shape with its inner and outer surfaces at temperatures of TiandTo, respectively. Derive an expression for the temperature distribution.arrow_forward
- A square silicon chip 7mm7mm in size and 0.5-mm thick is mounted on a plastic substrate as shown in the sketch below. The top surface of the chip is cooled by a synthetic liquid flowing over it. Electronic circuits on the bottom of the chip generate heat at a rate of 5 W that must be transferred through the chip. Estimate the steady-state temperature difference between the front and back surfaces of the chip. The thermal conductivity of silicon is 150 W/m K. Problem 1.6arrow_forward5.10 Experiments have been performed on the temperature distribution in a homogeneous long cylinder (0.1 m diameter, thermal conductivity of 0.2 W/m K) with uniform internal heat generation. By dimensional analysis, determine the relation between the steady-state temperature at the center of the cylinder , the diameter, the thermal conductivity, and the rate of heat generation. Take the temperature at the surface as your datum. What is the equation for the center temperature if the difference between center and surface temperature is when the heat generation is ?arrow_forwardA hollow sphere with inner and outer radii of R1 and R2, respectively, is covered with a layer of insulation having an outer radius of R3. Derive an expression for the rate of heat transfer through the insulated sphere in terms of the radii, the thermal conductivities, the heat transfer coefficients, and the temperatures of the interior and the surrounding medium of the sphere.arrow_forward
- Derive a heat rate expression for the following geometry. Assume there is a poor contact at the junction of walls Y and Z and consider one-dimensional steady-state heat transfer with constant thermal conductivities of the walls.arrow_forwardplease help with this im not sure what i did wrongarrow_forwardA solid cylinder of radius R and length L is made from material with thermal conductivity 2. Heat is generated inside the cylinder at a rate S (energy per unit volume per unit time). (a) Neglecting conduction along the axis of the cylinder, find the steady-state temperature distribution in the cylinder, given that the surface temperature is Ts. (b) Consider a crude approximation of a mouse modeled as a cylinder of radius 1 cm and length 5 cm. If the ambient air temperature is 10°C and the internal rate of heat generation in the animal is 10-³ W/cm³, find the skin temperature (Ts) for the mouse. The external heat-transfer coefficient is h = 0.2 W/m².K. (You can neglect conduction along the axis of the mouse, as in part a.)arrow_forward
- After a thorough derivation by Doraemon to establish an equation for cylindrical fuel rod of a nuclear reactor. Here he was able to come up an equation of heat generated internally as shown below. 9G = 9. where qG is the local rate of heat generation per unit volume at radius r, ro is the outside radius, and qo is the rate of heat generation per unit volume at the centre line. Calculate the temperature drop from the centre line to the surface for a 2.5 cm outer diameter rod having k = 25 W/m K, if the rate of heat removal from the surface is 1650 kW/m² А) 619°C В 719 °C C) 819 °C D) 919 °C E 1019 °C F None of thesearrow_forwardQ1 Passage of an electric current through a long conducting rod of radius r; and thermal conductivity k, results in uniform volumetric heating at a rate of ġ. The conduct- ing rod is wrapped in an electrically nonconducting cladding material of outer radius r, and thermal conduc- tivity k, and convection cooling is provided by an adjoining fluid. Conducting rod, ġ, k, 11 To Čladding, ke For steady-state conditions, write appropriate forms of the heat equations for the rod and cladding. Express ap- propriate boundary conditions for the solution of these equations.arrow_forwardenergy generation is öccuring inner radius r, and outer radius r2. Under what condi- a Spic tion is the linear temperature distribution shown in Problem 2.38 possible? 2.40 The steady-state temperature distribution in a one- dimensional wall of thermal conductivity k and thick- ness L is of the form T= ax +bx+ cx + d. Derive expressions for the heat generation rate per unit volume in the wall and the heat fluxes at the two wall faces (x = 0, L). 2.41 One-dimensional, steady-state conduction with no energy generation is occurring in a plane wall of con- stant thermal conductivity. 120 100arrow_forward
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning