At a given instant of time, the temperature distribution within an infinite homogeneous body is given by the function
Assuming constant properties and no internal heat generation, determine the regions where the temperature changes with time.
Want to see the full answer?
Check out a sample textbook solutionChapter 2 Solutions
Fundamentals of Heat and Mass Transfer
- In a conduction heat transfer process through a solid slab layer taking place under steady-state conditions, the following temperature profile is observed. T2 Ax However, conduction heat transfer in radial direction through a cylinder (again under steady-state conditions) does not yield such a straight line for the temperature profile, but the following one: T1 T2 Δη T2 T, Why? Please also provide an explanation based on conduction heat transfer equations used in both cases.arrow_forwardAt a given moment in time, the temperature distribution inside an infinite homogeneous body is given by the function T(x, y, z) = x² – 2y² – xy + 2yz. Considering constant properties and no heat generation inside the body, determine the regions where the temperature varies over timearrow_forwardYou are asked to estimate the maximum human body temperature if the metabolic heat produced in your body could escape only by tissue conduction and later on the surface by convection. Simplify the human body as a cylinder of L=1.8 m in height and ro= 0.15 m in radius. Further, simplify the heat transfer process inside the human body as a 1-D situation when the temperature only depends on the radial coordinater from the centerline. The governing dT +q""=0 dr equation is written as 1 d k- r dr r = 0, dT dr =0 dT r=ro -k -=h(T-T) dr (k-0.5 W/m°C), ro is the radius of the cylinder (0.15 m), h is the convection coefficient at the skin surface (15 W/m² °C), Tair is the air temperature (30°C). q" is the average volumetric heat generation rate in the body (W/m³) and is defined as heat generated per unit volume per second. The 1-D (radial) temperature distribution can be derived as: T(r) = q"¹'r² qr qr. + 4k 2h + 4k +T , where k is thermal conductivity of tissue air (A) q" can be calculated…arrow_forward
- 3.4 Estimate the rate of heat loss due to radiation from a covered pot of water at 95 ° C. How does this compare with the 60 W that is lost due only to convection and conduction losses? What amount of energy input would be needed to maintain the water at its boiling point for 30 minutes? The polished stainless steel pot is cylindrical, 20 cm in diameter and 14 cm high, with a tight-fitting flat cover. The air temperature in the kitchen is about 25 ° C. State any assumptions you make in deriving your estimatesarrow_forwardPlease do it correctlyarrow_forwardIn this question, we are concerned with the evolution of the temperature u(x, t) in a homogeneous thin heat conducting rod of length L = 1. We can consider that the rod is laterally insulated as to have a one-dimensional problem. The evolution of the temperature is governed by the one-dimensional heat equation ди 0 0 = K Ət Əx2' Assume that this equation is subject to the following initial conditions u(x,0) = f(x) and boundary conditions (0, t) = 0 and ди (1,t) + и(1,t) — 0 (i) Discuss briefly the physical meaning of the boundary conditions.arrow_forward
- Two large containers A and B of the same size are filled with different fluids. The fluids in containers A and B are maintained at 0° C and 100° C, respectively. A small metal bar, whose initial temperature is 100° C, is lowered into container A. After 1 minute the temperature of the bar is 90° C. After 2 minutes the bar is removed and instantly transferred to the other container. What is the temperature of the bar at the instant it is transferred?arrow_forwardWhich formula is used to calculate the heat conduction in the AXIAL direction in a vertically located pipe segment whose inner and outer surfaces are perfectly insulated. Here r, is inner radius, r, outer radius, Tri pipe inner surface temperature, Tro pipe outer surface temperature, L is the length of the pipe, T the temperature on the lower surface, Ty the temperature on upper surface. Tu r; Tro rarrow_forward= Consider a large plane wall of thickness L=0.3 m, thermal conductivity k = 2.5 W/m.K, and surface area A = 12 m². The left side of the wall at x=0 is subjected to a net heat flux of ɖo = 700 W/m² while the temperature at that surface is measured to be T₁ = 80°C. Assuming constant thermal conductivity and no heat generation in the wall, (a) express the differential equation and the boundary equations for steady one- dimensional heat conduction through the wall, (b) obtain a relation for the variation of the temperature in the wall by solving the differential equation, and (c) evaluate the temperature of the right surface of the wall at x=L. Ti до L Xarrow_forward
- How long should it take to boil an egg? Model the egg as a sphere with radius of 2.3 cm that has properties similar to water with a density of = 1000 kg/m3 and thermal conductivity of k = 0.606 Watts/(mC) and specific heat of c = 4182 J/(kg C). Suppose that an egg is fully cooked when the temperature at the center reaches 70 C. Initially the egg is taken out of the fridge at 4 C and placed in the boiling water at 100 C. Since the egg shell is very thin assume that it quickly reaches a temperature of 100 C. The protein in the egg effectively immobilizes the water so the heat conduction is purely conduction (no convection). Plot the temperature of the egg over time and use the data tooltip in MATLAB to make your conclusion on the time it takes to cook the egg in minutes.arrow_forwardA plane wall of thickness 2L = 2*33 mm and thermal conductivity k = 7 W/m-K experiences uniform volumetric heat generation at a rate q˙, while convection heat transfer occurs at both of its surfaces (x = −L, + L), each of which is exposed to a fluid of temperature T∞ = 31°C. Under steady-state conditions, the temperature distribution in the wall is of the form T(x) = a + bx + cx2 where a = 85°C, b = −-218°C/m, c = −-23,942°C/m2, and x is in meters. The origin of the x-coordinate is at the midplane of the wall. (a) Sketch the temperature distribution and identify significant physical features. (b) What is the volumetric rate of heat generation q˙ in the wall? (c) Obtain an expression for the heat flux distribution qx″(x). Is the heat flux zero at any location? Explain any significant features of the distribution. (d) Determine the surface heat fluxes, qx″(−L) and qx″(+L). How are these fluxes related to the heat generation rate? (e) What are the convection coefficients…arrow_forward2arrow_forward
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning