For a long circular tube of inner and outer radii
Want to see the full answer?
Check out a sample textbook solutionChapter 2 Solutions
Fundamentals of Heat and Mass Transfer
- 2.29 In a cylindrical fuel rod of a nuclear reactor, heat is generated internally according to the equation where = local rate of heat generation per unit volume at r = outside radius = rate of heat generation per unit volume at the centerline Calculate the temperature drop from the centerline to the surface for a 2.5-cm-diameter rod having a thermal conductivity of if the rate of heat removal from its surface is 1.6 .arrow_forward2.2 A small dam, which is idealized by a large slab 1.2 m thick, is to be completely poured in a short Period of time. The hydration of the concrete results in the equivalent of a distributed source of constant strength of 100 W/m3. If both dam surfaces are at 16°C, determine the maximum temperature to which the concrete will be subjected, assuming steady-state conditions. The thermal conductivity of the wet concrete can be taken as 0.84 W/m K.arrow_forward2.15 Suppose that a pipe carrying a hot fluid with an external temperature of and outer radius is to be insulated with an insulation material of thermal conductivity k and outer radius . Show that if the convection heat transfer coefficient on the outside of the insulation is and the environmental temperature is , the addition of insulation actually increases the rate of heat loss if , and the maximum heat loss occurs when . This radius, is often called the critical radius.arrow_forward
- A square silicon chip 7mm7mm in size and 0.5-mm thick is mounted on a plastic substrate as shown in the sketch below. The top surface of the chip is cooled by a synthetic liquid flowing over it. Electronic circuits on the bottom of the chip generate heat at a rate of 5 W that must be transferred through the chip. Estimate the steady-state temperature difference between the front and back surfaces of the chip. The thermal conductivity of silicon is 150 W/m K. Problem 1.6arrow_forwardThe handle of a ladle used for pouring molten lead is 30 cm long. Originally the handle was made of 1.9cm1.25cm mild steel bar stock. To reduce the grip temperature, it is proposed to form the handle of tubing 0.15 cm thick to the same rectangular shape. If the average heat transfer coefficient over the handle surface is 14 W/m K, estimate the reduction of the temperature at the grip in air at 21C.arrow_forward2.43 A turbine blade 6.3 cm long, with cross-sectional area and perimeter , is made of stainless steel . The temperature of the root, , is . The blade is exposed to a hot gas at , and the heat transfer coefficient is K. Determine the temperature of the blade tip and the rate of heat flow at the root of the blade. Assume that the tip is insulated.arrow_forward
- 1.37 Mild steel nails were driven through a solid wood wall consisting of two layers, each 2.5-cm thick, for reinforcement. If the total cross-sectional area of the nails is 0.5% of the wall area, determine the unit thermal conductance of the composite wall and the percent of the total heat flow that passes through the nails when the temperature difference across the wall is 25°C. Neglect contact resistance between the wood layers.arrow_forward2.30 An electrical heater capable of generating 10,000 W is to be designed. The heating element is to be a stainless steel wire having an electrical resistivity of ohm-centimeter. The operating temperature of the stainless steel is to be no more than 1260°C. The heat transfer coefficient at the outer surface is expected to be no less than in a medium whose maximum temperature is 93°C. A transformer capable of delivering current at 9 and 12 V is available. Determine a suitable size for the wire, the current required, and discuss what effect a reduction in the heat transfer coefficient would have. (Hint: Demonstrate first that the temperature drop between the center and the surface of the wire is independent of the wire diameter, and determine its value.)arrow_forwardOne end of a 0.3-m-long steel rod is connected to a wall at 204C. The other end is connected to a wall that is maintained at 93C. Air is blown across the rod so that a heat transfer coefficient of 17W/m2 K is maintained over the entire surface. If the diameter of the rod is 5 cm and the temperature of the air is 38C, what is the net rate of heat loss to the air?arrow_forward
- 3.10 A spherical shell satellite (3-m-OD, 1.25-cm-thick stainless steel walls) re-enters the atmosphere from outer space. If its original temperature is 38°C, the effective average temperature of the atmosphere is 1093°C, and the effective heat transfer coefficient is , estimate the temperature of the shell after reentry, assuming the time of reentry is 10 min and the interior of the shell is evacuated.arrow_forward2.45 Heat is transferred from water to air through a brass wall . The addition of rectangular brass fins, 0.08 cm thick and 2.5 cm long, spaced 1.25 cm apart, is contemplated. Assuming a water-side heat transfer coefficient of and an airside heat transfer coefficient of , compare the gain in heat transfer rate achieved by adding fins to (a) the water side, (b) the air side, and (c) both sides. (Neglect temperature drop through the wall.)arrow_forward2.5 Derive an expression for the temperature distribution in a plane wall in which there are uniformly distributed heat sources that vary according to the linear relation where is a constant equal to the heat generation per unit volume at the wall temperature . Both sides of the plate are maintained at and the plate thickness is 2L.arrow_forward
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning