Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470917855
Author: Bergman, Theodore L./
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 2.24P
Compare and contrast the heat capacity
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A small stainless-steel rod 7 mm in diameter was heated so it is at 300 °C. It is quenched in a bath of room temperature water, where it has a heat transfer coefficient of 30 W/m2K. How long will it take to be cool to the touch? Justify your answer and all assumptions. (You will generate a time constant and the Bi for this problem.
composite protective wall is formed of a 1 in copper plate, a 1/8 in layer of asbestos, a 2 in layer of fiberglass. The thermal conductivities of the materials in units of BTU/hr-ft-F are 240, 0.048 and 0.022 respectively. The overall temperature difference across the wall is 500 F. Calculate the heat transfer per unit area through the composite structure.
ssignment 3 Final Composite Wall.pdf - Adobe Reader
Edit View Window Help
125%
Comment
(1) For the composite wall shown below, related thermal conductivities are given as kA
= 35 W/m.K, kB = 12 W/m.K, kc = 23 W/m.K, and ko = 5 W/m.K.
(a) Sketch the electrical resistance circuit of the composite wall.
(b) Determine the steady-state heat transfer rate.
(c) Determine the effective thermal conductivity for the composite walls. This makes it
possible to consider the composite wall as a single material of thermal conductivity keffi
rather than four different materials with four different thermal conductivities.
6 cm
T2 = 22°C
T = 300°C
A
D
3 cm
1m
10 cm-
20 cm
e-8 cm
843 AM
O Type here to search
6/30/2021
Chapter 2 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 2 - Assume steady-state, one-dimensional heat...Ch. 2 - Assume steady-state, one-dimensional conduction in...Ch. 2 - A hot water pipe with outside radius r, has a...Ch. 2 - A spherical shell with inner radius r1 and outer...Ch. 2 - Assume steady-state, one-dimensional heat...Ch. 2 - A composite rod consists of two different...Ch. 2 - A solid, truncated cone serves as a support for a...Ch. 2 - To determine the effect of the temperature...Ch. 2 - A young engineer is asked to design a thermal...Ch. 2 - A one-dimensional plane wall of thickness 2L=100mm...
Ch. 2 - Consider steady-state conditions for...Ch. 2 - Consider a plane wall 100 mm thick and of thermal...Ch. 2 - A cylinder of radius ro, length L, and thermal...Ch. 2 - In the two-dimensional body illustrated, the...Ch. 2 - Consider the geometry of Problem 2.14 for the case...Ch. 2 - Steady-state, one-dimensional conduction occurs in...Ch. 2 - An apparatus for measuring thermal conductivity...Ch. 2 - An engineer desires to measure the thermal...Ch. 2 - Consider a 300mm300mm window in an aircraft. For a...Ch. 2 - Consider a small but known volume of metal that...Ch. 2 - Use INT to perform the following tasks. Graph the...Ch. 2 - Calculate the thermal conductivity of air,...Ch. 2 - A method for determining the thermal conductivity...Ch. 2 - Compare and contrast the heat capacity cp of...Ch. 2 - A cylindrical rod of stainless steel is insulated...Ch. 2 - At a given instant of time, the temperature...Ch. 2 - A pan is used to boil water by placing it on a...Ch. 2 - Uniform internal heat generation at q=5107W/m3 is...Ch. 2 - Consider a one-dimensional plane wall with...Ch. 2 - The steady-state temperature distribution in a...Ch. 2 - The temperature distribution across a wall 0.3 m...Ch. 2 - Prob. 2.33PCh. 2 - One-dimensional, steady-state conduction with...Ch. 2 - Derive the heat diffusion equation, Equation 2.26,...Ch. 2 - Derive the heat diffusion equation, Equation 2.29....Ch. 2 - The steady-state temperature distribution in a...Ch. 2 - One-dimensional, steady-state conduction with no...Ch. 2 - One-dimensional, steady-state conduction with no...Ch. 2 - The steady-state temperature distribution in a...Ch. 2 - Prob. 2.41PCh. 2 - Prob. 2.42PCh. 2 - cylindrical system illustrated has negligible...Ch. 2 - Beginning with a differential control volume in...Ch. 2 - Prob. 2.45PCh. 2 - Prob. 2.46PCh. 2 - For a long circular tube of inner and outer radii...Ch. 2 - Passage of an electric current through a long...Ch. 2 - Two-dimensional. steady-state conduction occurs in...Ch. 2 - An electric cable of radius r1 and thermal...Ch. 2 - A spherical shell of inner and outer radii ri and...Ch. 2 - A chemically reacting mixture is stored in a...Ch. 2 - A thin electrical heater dissipating 4000W/m2 is...Ch. 2 - The one-dimensional system of mass M with constant...Ch. 2 - Consider a one-dimensional plane wall of thickness...Ch. 2 - A large plate of thickness 2L is at a uniform...Ch. 2 - The plane wall with constant properties and no...Ch. 2 - Consider the steady-state temperature...Ch. 2 - A plane wall has constant properties, no internal...Ch. 2 - A plane wall with constant properties is initially...Ch. 2 - Consider the conditions associated with Problem...Ch. 2 - Consider the steady-state temperature distribution...Ch. 2 - A spherical particle of radius r1 experiences...Ch. 2 - Prob. 2.64PCh. 2 - A plane wall of thickness L=0.1m experiences...Ch. 2 - Prob. 2.66PCh. 2 - A composite one-dimensional plane wall is of...Ch. 2 - Typically, air is heated in a hair dryer by...Ch. 2 - Prob. 2.69P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 1.63 Liquid oxygen (LOX) for the space shuttle is stored at 90 K prior to launch in a spherical container 4 m in diameter. To reduce the loss of oxygen, the sphere is insulated with superinsulation developed at the U.S. National Institute of Standards and Technology's Cryogenic Division; the superinsulation has an effective thermal conductivity of 0.00012 W/m K. If the outside temperature is on the average and the LOX has a heat of vaporization of 213 J/g, calculate the thickness of insulation required to keep the LOX evaporation rate below 200 g/h.arrow_forwardOne end of a 40 cm metal rod 2.0 cm2 in cross section is in a steam bath while the other end is embedded in ice. It is observed that 13.3 grams of ice melted in 15 minutes from the heat conducted by the rod. What is the thermal conductivity of the rod. COMPLETE FBD SOLUTION AND REQUIREMENTS PS. THIS IS A HEAT TRANSFER PROBLEMarrow_forwardD. Below picture shows the composite wall block diagram. Calculate the thermal resistance ofeach blocks of A, B and C. Draw the thermal circuit diagram for the below composite blocksand hence find the heat flow rate at steady state in the given direction. Heat capacities ofmaterials A, B and C are 120 W/ m C, 40 W/ m C and 20 W/ m C respectively. please try to give a great solution for this question. Don't give unsuitable answers like copy paste answersarrow_forward
- just aarrow_forwardConsider a solid sphere of radius R with a fixed surface temperature, TR. Heat is generated within the solid at a rate per unit volume given by q = ₁ + ₂r; where ₁ and ₂ are constants. (a) Assuming constant thermal conductivity, use the conduction equation to derive an expression for the steady-state temperature profile, T(r), in the sphere. (b) Calculate the temperature at the center of the sphere for the following parameter values: R=3 m 1₁-20 W/m³ TR-20 °C k-0.5 W/(m K) ₂-10 W/m³arrow_forward(a) What is the rate of heat transfer through a wall that is 2 m high by 2.5 m wide?(b) Sketch the temperature distribution.arrow_forward
- Please explain temperature dependence of thermal conductivity including interaction mechanism ?arrow_forwardWhat is the analogical reason between heat transfer by conduction and flow of electricity through ohmic resistance? Use a composite wall of a building to illustrate the concept. A composite slab with three layers of thermal conductivities k1, k2, k3 and thickness ti, t2, të respectively, are placed in a close contact. Derive an expression from the first principle for the heat flow through the composite slab per unit surface area in terms of the overall temperature difference across the slab.arrow_forwardI need the answer as soon as possiblearrow_forward
- Question is iamgearrow_forwardThermal energy is being transferred through a 0.8 mm layer of human skin at a rate of 1.1 x 104 W/m?. The room temperature is 27 °C. (a) Determine the thermal conductivity of the skin.arrow_forwardHow can you find the thermal conductivity of a metal bar in experimentally? Explain the concept of driving potential as applicd to heat transfer problems. Does conduction play any role in the process of convective heat transfer? Explain.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Understanding Conduction and the Heat Equation; Author: The Efficient Engineer;https://www.youtube.com/watch?v=6jQsLAqrZGQ;License: Standard youtube license