Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470917855
Author: Bergman, Theodore L./
Publisher: John Wiley & Sons Inc
expand_more
expand_more
format_list_bulleted
Question
Chapter 2, Problem 2.69P
(a)
To determine
The relative magnitude of
(b)
To determine
The relative magnitude of
(c)
To determine
The heat flux distribution as a function of
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
2. A rectangular block has thickness B in the x-direction. The side at x = 0 is held at temperature
T, while the side at x = B is held at T2. The other four sides are well insulated. Heat is generated
in the block at a uniform rate per unit volume of [.
(a) Use the conduction equation to derive an expression for the steady-state temperature profile,
T(x). Assume constant thermal conductivity.
(b) Use the result of part (a) to calculate the maximum temperature in the block for the following
values of the parameters:
T₁-120 °C k-0.2 W/(m K) B-1.0 m T₂-0 F-100 W/m³
Number 16.
Looking for a handwritten solution as fast as possible.
Chapter 2 Solutions
Fundamentals of Heat and Mass Transfer
Ch. 2 - Assume steady-state, one-dimensional heat...Ch. 2 - Assume steady-state, one-dimensional conduction in...Ch. 2 - A hot water pipe with outside radius r, has a...Ch. 2 - A spherical shell with inner radius r1 and outer...Ch. 2 - Assume steady-state, one-dimensional heat...Ch. 2 - A composite rod consists of two different...Ch. 2 - A solid, truncated cone serves as a support for a...Ch. 2 - To determine the effect of the temperature...Ch. 2 - A young engineer is asked to design a thermal...Ch. 2 - A one-dimensional plane wall of thickness 2L=100mm...
Ch. 2 - Consider steady-state conditions for...Ch. 2 - Consider a plane wall 100 mm thick and of thermal...Ch. 2 - A cylinder of radius ro, length L, and thermal...Ch. 2 - In the two-dimensional body illustrated, the...Ch. 2 - Consider the geometry of Problem 2.14 for the case...Ch. 2 - Steady-state, one-dimensional conduction occurs in...Ch. 2 - An apparatus for measuring thermal conductivity...Ch. 2 - An engineer desires to measure the thermal...Ch. 2 - Consider a 300mm300mm window in an aircraft. For a...Ch. 2 - Consider a small but known volume of metal that...Ch. 2 - Use INT to perform the following tasks. Graph the...Ch. 2 - Calculate the thermal conductivity of air,...Ch. 2 - A method for determining the thermal conductivity...Ch. 2 - Compare and contrast the heat capacity cp of...Ch. 2 - A cylindrical rod of stainless steel is insulated...Ch. 2 - At a given instant of time, the temperature...Ch. 2 - A pan is used to boil water by placing it on a...Ch. 2 - Uniform internal heat generation at q=5107W/m3 is...Ch. 2 - Consider a one-dimensional plane wall with...Ch. 2 - The steady-state temperature distribution in a...Ch. 2 - The temperature distribution across a wall 0.3 m...Ch. 2 - Prob. 2.33PCh. 2 - One-dimensional, steady-state conduction with...Ch. 2 - Derive the heat diffusion equation, Equation 2.26,...Ch. 2 - Derive the heat diffusion equation, Equation 2.29....Ch. 2 - The steady-state temperature distribution in a...Ch. 2 - One-dimensional, steady-state conduction with no...Ch. 2 - One-dimensional, steady-state conduction with no...Ch. 2 - The steady-state temperature distribution in a...Ch. 2 - Prob. 2.41PCh. 2 - Prob. 2.42PCh. 2 - cylindrical system illustrated has negligible...Ch. 2 - Beginning with a differential control volume in...Ch. 2 - Prob. 2.45PCh. 2 - Prob. 2.46PCh. 2 - For a long circular tube of inner and outer radii...Ch. 2 - Passage of an electric current through a long...Ch. 2 - Two-dimensional. steady-state conduction occurs in...Ch. 2 - An electric cable of radius r1 and thermal...Ch. 2 - A spherical shell of inner and outer radii ri and...Ch. 2 - A chemically reacting mixture is stored in a...Ch. 2 - A thin electrical heater dissipating 4000W/m2 is...Ch. 2 - The one-dimensional system of mass M with constant...Ch. 2 - Consider a one-dimensional plane wall of thickness...Ch. 2 - A large plate of thickness 2L is at a uniform...Ch. 2 - The plane wall with constant properties and no...Ch. 2 - Consider the steady-state temperature...Ch. 2 - A plane wall has constant properties, no internal...Ch. 2 - A plane wall with constant properties is initially...Ch. 2 - Consider the conditions associated with Problem...Ch. 2 - Consider the steady-state temperature distribution...Ch. 2 - A spherical particle of radius r1 experiences...Ch. 2 - Prob. 2.64PCh. 2 - A plane wall of thickness L=0.1m experiences...Ch. 2 - Prob. 2.66PCh. 2 - A composite one-dimensional plane wall is of...Ch. 2 - Typically, air is heated in a hair dryer by...Ch. 2 - Prob. 2.69P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- 1.63 Liquid oxygen (LOX) for the space shuttle is stored at 90 K prior to launch in a spherical container 4 m in diameter. To reduce the loss of oxygen, the sphere is insulated with superinsulation developed at the U.S. National Institute of Standards and Technology's Cryogenic Division; the superinsulation has an effective thermal conductivity of 0.00012 W/m K. If the outside temperature is on the average and the LOX has a heat of vaporization of 213 J/g, calculate the thickness of insulation required to keep the LOX evaporation rate below 200 g/h.arrow_forward1.3 A furnace wall is to be constructed of brick having standard dimensions of Two kinds of material are available. One has a maximum usable temperature of 1040°C and a thermal conductivity of 1.7 W/(m K), and the other has a maximum temperature limit of 870°C and a thermal conductivity of 0.85 W/(m K). The bricks have the same cost and are laid in any manner, but we wish to design the most economical wall for a furnace with a temperature of 1040°C on the hot side and 200°C on the cold side. If the maximum amount of heat transfer permissible is 950 , determine the most economical arrangement using the available bricks.arrow_forward1.77 Explain each in your own words. (a) What is the mode of heat transfer through a large steel plate that has its surfaces at specified temperatures? (b) What are the modes when the temperature on one surface of the steel plate is not specified, but the surface is exposed to a fluid at a specified temperature?arrow_forward
- To determine the thermal conductivity of a structural material, a large 15-cm-thick slab of the material is subjected to a uniform heat flux of 2500 W/m2 while thermocouples embedded in the wall at 2.5 cm. intervals are read over a period of time. After the system had reached equilibrium, an operator recorded the thermocouple readings shown below for two different environmental conditions: Distance from the Surface (cm) Temperature (C) Test 1 0 40 5 65 10 97 15 132 Test 2 0 95 5 130 10 168 15 208 From these data, determine an approximate expression for the thermal conductivity as a function of temperature between 40 and 208C.arrow_forwardA hollow cylindrical copper conductor 1.27cm. i.d. and 5.1cm. o.d. carries a current density 5000 amp/cm². For copper K = .38 kW/m°K and electrical resistivity = 2 x 10-6 ohm cm. Find the position and magnitude of the maximum temperature and the internal and external heat removal when (a) the outside temperature is 37.8°c and no heat removal occurs on the inside and (b) the outside is at 37.6°C and the inside at 27.2°C.arrow_forwardThe following graph shows the thermal behavior of 2 kg of a material called Uniandesato undergoing a solid-liquid phase transition. In a container, thermally insulated from the outside, 20 kg of liquid water at a temperature of 80°C are placed. In addition to this, an unknown amount of Uniandesato in a 100% solid state at its melting temperature (10°C) is added. The specific heat of water is 4186 J/kg°C. a) If the system reaches an equilibrium temperature of 60°C, calculate the initial amount of Uniandesato added to the container. b) Calculate the change in entropy during this process and show that it is consistent with the Second Law of Thermodynamics. Hint: Extract the necessary information to solve this problem from the graph.arrow_forward
- A wall of a house is made from two layers of bricks enclosing a layer of insulation. A radiator is positioned to cover the whole internal surface, and used intermittently when the internal temperature is low. The external surface is exposed to the outside air. Which of the following assumptions could be used to identify the relevant reduced form of the conduction equation to find the temperature in the wall. a. Conduction is mainly in two directions. b. Conduction is mainly in one direction. c. The wall properties are homogeneous. d. Steady conditions exist. e. Unsteady conditions exist. f. There is an internal volumetric heat generation in the wall.arrow_forwardProblem 1. 67 pts bar shown below, determine the temperatures at Nodes 2 and 3. Assume 1-D heat transfer that only occurs in the x-direction as the upper and lower 1-D Heat Transfer with Conduction. For the 1-D composite boundaries of the elements are insulated. Assume the cross-sectional area is the same for all elements, A=0.01 m?. For Element 1, let the thermal conductivity be 100 W/(m °C). For Element 2, let the thermal conductivity be 110 W/(m °C). For Element 3, let the thermal conductivity be 120 W/(m °C). The left end of the bar has a constant temperature of 120 °C (at Node 1) and the right end has a constant temperature of 276 °C (at Node 4). Insulated, 1-d heat transfer in x-dir Node 1 Node 2 Node 3 Node 4 +x 120°C E1 E2 ЕЗ 276°C 1 mm 2 mm 0.5mm Insulatedarrow_forwardDo fast i will give you good ratearrow_forward
- The inner and outer radii of a hollow cylinder are 15 mm (r, ) and 25 mm (r, ), respectively. The temperatures of the inner and outer walls are 400°C (T,) and 350°C (T,), respectively. The thermal conductivity of the cylinder material obeys the relationship K = (400-0.05T) W/mK where T is in degrees Celsius. Find the heat transferred from the hollow cylinder per unit length. The thermal conductivity,arrow_forwardQuestion 2: The composite wall of an oven consists of three materials, two of which are of known thermal conductivity, kA 20 W/m K and kC50 W/m K, and known thickness, LA 0.30 m and LC 0.15 m. The third material, B, which is sandwiched between materials A and C, is of known thickness, LB 0.15 m, but unknown thermal conductivity kB. Under steady-state operating conditions, measurements reveal an outer surface temperature of Ts,o 20°C, an inner surface temperature of Ts,i 600°C, and an oven air temperature of T 800°C. The inside convection coefficient h is known to be 25 W/m2 K. What is the value of kB?arrow_forwardPlease provide accurate answer with proper steps The wall of the furnace is 30.48 mm thick and is insulated from outside. Thermal conductivity of the wall material is 0.1 W/m K and the insulation material is 0.01 W/m K. The furnace operates at 650 0C and the ambient temperature is 30 0 Allowable temperature on the outer side of the insulation is 1000C. Determine the overall heat transfer by conduction per unit area occurring across a furnace wall made from clay. If the air side heat transfer coefficient is 0.4 W/m2 K, calculate the minimum insulation thickness requirement.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Heat Transfer (Activate Learning wi...Mechanical EngineeringISBN:9781305387102Author:Kreith, Frank; Manglik, Raj M.Publisher:Cengage Learning
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Heat Transfer – Conduction, Convection and Radiation; Author: NG Science;https://www.youtube.com/watch?v=Me60Ti0E_rY;License: Standard youtube license