Fundamentals of Heat and Mass Transfer
Fundamentals of Heat and Mass Transfer
7th Edition
ISBN: 9780470917855
Author: Bergman, Theodore L./
Publisher: John Wiley & Sons Inc
bartleby

Concept explainers

bartleby

Videos

Textbook Question
Book Icon
Chapter 2, Problem 2.65P

A plane wall of thickness L = 0.1 m experiences uniform volumetric heating at a rate q . . One surface of the wall ( x = 0 ) is insulated, and the other surface is exposed to a fluid at T = 20 ° C, with convection heat transfer characterized by h = 1000 W/m 2 K . Initially, the temperature distribution in the wall is T ( x , 0 ) = a + b x 2 , where a = 300 ° C, b = 1.0 × 10 40 C/m 2 , and x is in meters. Suddenly, the volumetric heat generation is deactivated ( q . = 0 for t 0 ) , while convection heat transfer continues to occur at x = L . The properties of the wall are ρ = 7000 kg/m 3 , c p = 450 J/kg K, and k = 90 W/m K .
Chapter 2, Problem 2.65P, A plane wall of thickness L=0.1m experiences uniform volumetric heating at a rate q.. One surface of

  1. Determine the magnitude of the volumetric energy generation rate q . associated with the initial condition ( t < 0 ) .
  2. On T x coordinates, sketch the temperature distribution for the following conditions: initial condition ( t < 0 ) , steady-state condition ( t ) , and two intermediate conditions.
  3. On q x n t coordinates, sketch the variation with time of the heat flux at the boundary exposed to the convection process, q x n ( L , t ) . Calculate the corresponding value of the heat flux at t = 0 , q x n ( L , 0 ) .
  4. Calculate the amount of energy removed from the wall per unit area ( J/m 2 ) by the fluid stream as the wall cools from its initial to steady-state condition.

Blurred answer
Students have asked these similar questions
Consider a heat conductor in the form of a long cylinder, with inner and outer radii R1 and R2, respectively. Heat is generated within the cylinder, where the temperature O(r, t) at position r and time t satisfies the modified heat equation = DV0 + H, where D is the thermal diffusivity, and H is proportional to the rate of heat production. The inner and outer surfaces of the cylinder are cooled by a fluid maintained at constant temperature Oo. (a) If the temperature is in a steady state and depends only on the distance r from the centre of the cylinder, use cylindrical coordinates (r, 0, 2) to write down an ordinary differential equation for O(r) valid in the region R1
Consider a wall that consists of two layers, A and B, with the following values: kA = 0.8 W/m⋅ºC, LA = 8 cm, kB = 0.2 W/m⋅ºC, LB = 5 cm. If the temperature drop across the wall is 18ºC, the rate of heat transfer through the wall per unit area of the wall is   a. 89.6 W/m2 b. 72.0 W/m2 c. 153 W/m2 d. 51.4 W/m2  e. 180 W/m2
A cylindrical uranium fuel rod of radius 5 mm in a nuclear reactor is generating heat at the rate of 4 x 107 W/m³ the rod is cooled by a liquid (convective heat transfer coefficient 1000 W/m²-K) at 25°C. At steady state, the surface temperature (in K) of the rod is

Chapter 2 Solutions

Fundamentals of Heat and Mass Transfer

Ch. 2 - Consider steady-state conditions for...Ch. 2 - Consider a plane wall 100 mm thick and of thermal...Ch. 2 - A cylinder of radius ro, length L, and thermal...Ch. 2 - In the two-dimensional body illustrated, the...Ch. 2 - Consider the geometry of Problem 2.14 for the case...Ch. 2 - Steady-state, one-dimensional conduction occurs in...Ch. 2 - An apparatus for measuring thermal conductivity...Ch. 2 - An engineer desires to measure the thermal...Ch. 2 - Consider a 300mm300mm window in an aircraft. For a...Ch. 2 - Consider a small but known volume of metal that...Ch. 2 - Use INT to perform the following tasks. Graph the...Ch. 2 - Calculate the thermal conductivity of air,...Ch. 2 - A method for determining the thermal conductivity...Ch. 2 - Compare and contrast the heat capacity cp of...Ch. 2 - A cylindrical rod of stainless steel is insulated...Ch. 2 - At a given instant of time, the temperature...Ch. 2 - A pan is used to boil water by placing it on a...Ch. 2 - Uniform internal heat generation at q=5107W/m3 is...Ch. 2 - Consider a one-dimensional plane wall with...Ch. 2 - The steady-state temperature distribution in a...Ch. 2 - The temperature distribution across a wall 0.3 m...Ch. 2 - Prob. 2.33PCh. 2 - One-dimensional, steady-state conduction with...Ch. 2 - Derive the heat diffusion equation, Equation 2.26,...Ch. 2 - Derive the heat diffusion equation, Equation 2.29....Ch. 2 - The steady-state temperature distribution in a...Ch. 2 - One-dimensional, steady-state conduction with no...Ch. 2 - One-dimensional, steady-state conduction with no...Ch. 2 - The steady-state temperature distribution in a...Ch. 2 - Prob. 2.41PCh. 2 - Prob. 2.42PCh. 2 - cylindrical system illustrated has negligible...Ch. 2 - Beginning with a differential control volume in...Ch. 2 - Prob. 2.45PCh. 2 - Prob. 2.46PCh. 2 - For a long circular tube of inner and outer radii...Ch. 2 - Passage of an electric current through a long...Ch. 2 - Two-dimensional. steady-state conduction occurs in...Ch. 2 - An electric cable of radius r1 and thermal...Ch. 2 - A spherical shell of inner and outer radii ri and...Ch. 2 - A chemically reacting mixture is stored in a...Ch. 2 - A thin electrical heater dissipating 4000W/m2 is...Ch. 2 - The one-dimensional system of mass M with constant...Ch. 2 - Consider a one-dimensional plane wall of thickness...Ch. 2 - A large plate of thickness 2L is at a uniform...Ch. 2 - The plane wall with constant properties and no...Ch. 2 - Consider the steady-state temperature...Ch. 2 - A plane wall has constant properties, no internal...Ch. 2 - A plane wall with constant properties is initially...Ch. 2 - Consider the conditions associated with Problem...Ch. 2 - Consider the steady-state temperature distribution...Ch. 2 - A spherical particle of radius r1 experiences...Ch. 2 - Prob. 2.64PCh. 2 - A plane wall of thickness L=0.1m experiences...Ch. 2 - Prob. 2.66PCh. 2 - A composite one-dimensional plane wall is of...Ch. 2 - Typically, air is heated in a hair dryer by...Ch. 2 - Prob. 2.69P

Additional Engineering Textbook Solutions

Find more solutions based on key concepts
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Principles of Heat Transfer (Activate Learning wi...
Mechanical Engineering
ISBN:9781305387102
Author:Kreith, Frank; Manglik, Raj M.
Publisher:Cengage Learning
Physics - Thermodynamics: (21 of 22) Change Of State: Process Summary; Author: Michel van Biezen;https://www.youtube.com/watch?v=AzmXVvxXN70;License: Standard Youtube License