A three-phase line, which has an impedance of ( 2 + j 4 ) Ω per phase, feeds two balanced three-phase loads that are connected in parallel. One of the loads is Y-connected with an impedance of ( 30 + j 40 ) Ω per phase, and the other is Δ -connected with an impedance of ( 60 − j 45 ) Ω per phase. The line is energized at the sending end from a 60-Hz, three-phase, balanced voltage source of 120 3 V (rms. line-to-line). Determine (a) the current, real power. and reactive power delivered by the sending-end source: (b) the line-to-line voltage at the load: (C) the current per phase in each load: and (d) the total three-phase real and reactive powers absorbed by each load and by the line. Check that the total three- phase complex power delivered by the source equals the total three-phase power absorbed by the line and loads.
A three-phase line, which has an impedance of ( 2 + j 4 ) Ω per phase, feeds two balanced three-phase loads that are connected in parallel. One of the loads is Y-connected with an impedance of ( 30 + j 40 ) Ω per phase, and the other is Δ -connected with an impedance of ( 60 − j 45 ) Ω per phase. The line is energized at the sending end from a 60-Hz, three-phase, balanced voltage source of 120 3 V (rms. line-to-line). Determine (a) the current, real power. and reactive power delivered by the sending-end source: (b) the line-to-line voltage at the load: (C) the current per phase in each load: and (d) the total three-phase real and reactive powers absorbed by each load and by the line. Check that the total three- phase complex power delivered by the source equals the total three-phase power absorbed by the line and loads.
A three-phase line, which has an impedance of
(
2
+
j
4
)
Ω
per phase, feeds two balanced three-phase loads that are connected in parallel. One of the loads is Y-connected with an impedance of
(
30
+
j
40
)
Ω
per phase, and the other is
Δ
-connected with an impedance of
(
60
−
j
45
)
Ω
per phase. The line is energized at the sending end from a 60-Hz, three-phase, balanced voltage source of
120
3
V
(rms. line-to-line). Determine (a) the current, real power. and reactive power delivered by the sending-end source: (b) the line-to-line voltage at the load: (C) the current per phase in each load: and (d) the total three-phase real and reactive powers absorbed by each load and by the line. Check that the total three- phase complex power delivered by the source equals the total three-phase power absorbed by the line and loads.
Answer the following questions:
1- Write radiation resistance (R.) equation for infinitesimal dipole antenna.
2- Write the angle expression form of first null beam width (FNBW) for 2/2 dipole.
3- Define the Directivity of antenna.
4- Write radar cross section equation.
5- Write the input impedance (Z) expression of lossless transmission line.
The input reactance of an infinitesimal linear dipole of length 1/60 and radius
a = x/200 is given by
[In(/2a) - 11
X-120-
tan(kl/2)
Assuming the wire of the dipole is copper with a conductivity of 5.7 × 10'S/m.
determine at f = 1 GHz the
(a) loss resistance
(b) radiation resistance
(c) radiation efficiency
input impedance
Q4- a) For the block diagram of control system shown below with its unit step response. Determine
(K, a,damping ration, Maximum overshoot, Wn, Wd,ẞ, ts, tp, td, tr, and overall transfer function?
C(1) ↑
1.4
1.2
1
0.8
0.6
0.4
0.2
R(s)
E(s)
K
C(s)
$(s + α)
0.05
0.1
0.15
0.2
+2%
-2%
Chapter 2 Solutions
Power System Analysis and Design (MindTap Course List)
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.