Power System Analysis and Design (MindTap Course List)
6th Edition
ISBN: 9781305632134
Author: J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 2, Problem 2.27MCQ
When working with balanced three-phase circuits, per-phase analysis is commonly done after converting
(a)True (b)False
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Problem 1 - Series en Parallel AC networks [19]
Look at the circuit in Figure 1 and
determine the following:
(a) Total Admittance.
(b) Total Impedance.
(c) Total Current (l:).
(d) Current (I1) through impedance Z2.
(e) Current (12) through impedance Z3.
(f) Current (I3) through impedance Z4.
(g) Is this an inductive or capacitive
circuit?
A.
B Zs
220V;50HZ
Figure 1
(h) Voltage across Z1.
(i) Voltage across A and B.
G) Voltage across Zs.
Z1 = 3 + j5 ohm
Z2 = 10 + jo ohm
Z3 = 5 + j15 ohm
Z4 = 10 – j30 ohm
Zs = 20 – j30 ohm
Admittance and Impedance in
rectangular notation.
All currents and voltage in polar
notation.
Take voltage as reference.
Discuss how delta connection is achieved in three-phase systems?
Discuss Fully the various methods available for transforming 3-phase voltages
to higher or lower 3-phase voltages. Highlight the advantages and disadvantages
of each. Include the connection diagrams.
Chapter 2 Solutions
Power System Analysis and Design (MindTap Course List)
Ch. 2 - The rms value of v(t)=Vmaxcos(t+) is given by a....Ch. 2 - If the rms phasor of a voltage is given by V=12060...Ch. 2 - If a phasor representation of a current is given...Ch. 2 - Prob. 2.4MCQCh. 2 - Prob. 2.5MCQCh. 2 - Prob. 2.6MCQCh. 2 - Prob. 2.7MCQCh. 2 - Prob. 2.8MCQCh. 2 - Prob. 2.9MCQCh. 2 - The average value of a double-frequency sinusoid,...
Ch. 2 - The power factor for an inductive circuit (R-L...Ch. 2 - The power factor for a capacitive circuit (R-C...Ch. 2 - Prob. 2.13MCQCh. 2 - The instantaneous power absorbed by the load in a...Ch. 2 - Prob. 2.15MCQCh. 2 - With generator conyention, where the current...Ch. 2 - Consider the load convention that is used for the...Ch. 2 - Prob. 2.18MCQCh. 2 - The admittance of the impedance j12 is given by...Ch. 2 - Consider Figure 2.9 of the text, Let the nodal...Ch. 2 - The three-phase source line-to-neutral voltages...Ch. 2 - In a balanced three-phase Y-connected system with...Ch. 2 - In a balanced system, the phasor sum of the...Ch. 2 - Consider a three-phase Y-connected source feeding...Ch. 2 - For a balanced- load supplied by a balanced...Ch. 2 - A balanced -load can be converted to an...Ch. 2 - When working with balanced three-phase circuits,...Ch. 2 - The total instantaneous power delivered by a...Ch. 2 - The total instantaneous power absorbed by a...Ch. 2 - Under balanced operating conditions, consider the...Ch. 2 - One advantage of balanced three-phase systems over...Ch. 2 - While the instantaneous electric power delivered...Ch. 2 - Given the complex numbers A1=630 and A2=4+j5, (a)...Ch. 2 - Convert the following instantaneous currents to...Ch. 2 - The instantaneous voltage across a circuit element...Ch. 2 - For the single-phase circuit shown in Figure...Ch. 2 - A 60Hz, single-phase source with V=27730 volts is...Ch. 2 - (a) Transform v(t)=75cos(377t15) to phasor form....Ch. 2 - Let a 100V sinusoidal source be connected to a...Ch. 2 - Consider the circuit shown in Figure 2.23 in time...Ch. 2 - For the circuit shown in Figure 2.24, compute the...Ch. 2 - For the circuit element of Problem 2.3, calculate...Ch. 2 - Prob. 2.11PCh. 2 - The voltage v(t)=359.3cos(t)volts is applied to a...Ch. 2 - Prob. 2.13PCh. 2 - A single-phase source is applied to a...Ch. 2 - Let a voltage source v(t)=4cos(t+60) be connected...Ch. 2 - A single-phase, 120V(rms),60Hz source supplies...Ch. 2 - Consider a load impedance of Z=jwL connected to a...Ch. 2 - Let a series RLC network be connected to a source...Ch. 2 - Consider a single-phase load with an applied...Ch. 2 - A circuit consists of two impedances, Z1=2030 and...Ch. 2 - An industrial plant consisting primarily of...Ch. 2 - The real power delivered by a source to two...Ch. 2 - A single-phase source has a terminal voltage...Ch. 2 - A source supplies power to the following three...Ch. 2 - Consider the series RLC circuit of Problem 2.7 and...Ch. 2 - A small manufacturing plant is located 2 km down a...Ch. 2 - An industrial load consisting of a bank of...Ch. 2 - Three loads are connected in parallel across a...Ch. 2 - Prob. 2.29PCh. 2 - Figure 2.26 shows three loads connected in...Ch. 2 - Consider two interconnected voltage sources...Ch. 2 - Prob. 2.35PCh. 2 - Prob. 2.36PCh. 2 - Prob. 2.37PCh. 2 - Prob. 2.38PCh. 2 - Prob. 2.39PCh. 2 - A balanced three-phase 240-V source supplies a...Ch. 2 - Prob. 2.41PCh. 2 - A balanced -connected impedance load with (12+j9)...Ch. 2 - A three-phase line, which has an impedance of...Ch. 2 - Two balanced three-phase loads that are connected...Ch. 2 - Two balanced Y-connected loads, one drawing 10 kW...Ch. 2 - Three identical impedances Z=3030 are connected in...Ch. 2 - Two three-phase generators supply a three-phase...Ch. 2 - Prob. 2.48PCh. 2 - Figure 2.33 gives the general -Y transformation....Ch. 2 - Consider the balanced three-phase system shown in...Ch. 2 - A three-phase line with an impedance of...Ch. 2 - A balanced three-phase load is connected to a...Ch. 2 - What is a microgrid?Ch. 2 - What are the benefits of microgrids?Ch. 2 - Prob. CCSQCh. 2 - Prob. DCSQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- A balanced Y-connected voltage source with Eag=2770volts is applied to a balanced-Y load in parallel with a balanced- load where ZY=20+j10andZ=30j15ohms. The Y load is solidly grounded. Using base values of Sbase1,=10kVAandVbaseLN=277volts, calculate the source current Ia in per-unit and in amperesarrow_forwardThree single-phase transformers, each rated 10MVA,66.4/12.5kV,60Hz, with an equivalent series reactance of 0.1 per unit divided equally between primary and secondary, are connected in a three-phase bank. The high-voltage windings are V-connected and their terminals are directly connected to a 115-kV three-phase bus. The secondary terminals are all shorted together. Find the currents entering the high-voltage terminals and leaving the low-voltage terminals if the low-voltage windings are (a) Y-connected and (b) - connected.arrow_forwardThree single-phase two-winding transformers, each rated 25MVA,34.5/13.8kV, are connected to form a three-phase bank. Balanced positive-suence voltages are applied to the high-voltage terminals, and a balanced, resistive Y load connected to the low-voltage terminals absorbs 75 MW at 13.8 kV. If one of the single-phase transformers is removed (resulting in an open connection) and the balanced load is simultaneously reduced to 43.3 MW (57.7 of the original value), determine (a) the load voltages Va,Vb, and Vc; (b) load currents Ia,Ib, and Ic; and (c) the MVA supplied by each of the remaining two transformers. Are balanced voltages still applied to the load? Is the open transformer overloaded?arrow_forward
- Q4/For the three-phase power network shown in Figure. the various components are: GI: 100 MVA, 0.30 pu reactance. G2: 60 MVA, 0.18 pu reactance. Transformers (cach): 50 MVA, 0.10 pu reactance. Inductive reactor X: 0.20 pu on a base of 100 MVA. Lines (each): 80 ohms (reactive); neglect resistance. with the network initially unloaded and a line voltage of 110 kV, a symmetrical short circuit occurs at midpoint E of line 2. Calculate the short circuit MVA to be interrupted by the circuit breakers A and B at the ends of the line. T3 38 L1 L2 G2 Bas 12 T4 Busarrow_forwardIn a balanced system, the phasor sum of the line-to-line voltages and the phasor sum of the line-to-neutral voltages are always equal to zero.(a) False (b) Truearrow_forwardA 50 Hz, Scott connected transformer supplies an unbalanced two phase load at ( 400 V) per phase. For the leading phase the load has a resistance of (13.3 ohm) and capacitor of (318) micro farad in series. For the other phase the load consists of resistance (10) ohm and an inductance of (42.3) mH. Calculate both mathematically and graphically the lines currents on 3- phase side. The main transformer primary to secondary turns ratio is (12/1).arrow_forward
- A 50 Hz, Scott connected transformer supplies an unbalanced two phase load at ( 400 V) per phase. For the leading phase the load has a resistance of (13.3 ohm) and capacitor of (318) micro farad in series. For the other phase the load consists of resistance (10) ohm and an inductance of (42.3) mH. Calculate both mathematically and graphically the lines currents on 3-phase side. The main transformer primary to secondary turns ratio is (12/1).arrow_forwardDescribe the star-delta connection configuration types in three phase transformers and their necessity by drawing and writing. Thank you very much if you answer.arrow_forwardA.With the aid of diagram describe Hybrid microgrid B. Discuss the following in the setting up of microgrid systems I- preconditions II- plan of actionsarrow_forward
- A three phase system cannot be obtained using two single phase source. True Falsearrow_forwardConnect three single-phase transformers in Y-Y, with subtractive polarity, so that the line-to-line voltages on the primary are 30 degrees delayed to their respective line-to-line voltages on the secondary. It should show each step that is needed to make this connection (example: the phasor diagram) and should show the final connection of the three transformers including the polarity markings. Assume phase A on the primary is terminal "H1".arrow_forwardPower in a three phase delta system with balanced load is equal to (Sqrt (3)) (VL) (IL) (p.f.) (Sqrt (3)) (Vph) (Iph) (p.f.) (Sqrt (3)) (VL) (Iph) (p.f.) O (Sqrt (3)) (Vph) (IL) (p.f.)arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Power System Analysis and Design (MindTap Course ...Electrical EngineeringISBN:9781305632134Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. SarmaPublisher:Cengage Learning
Power System Analysis and Design (MindTap Course ...
Electrical Engineering
ISBN:9781305632134
Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher:Cengage Learning
What is the Difference Between Single Phase and Three Phase???; Author: Electrician U;https://www.youtube.com/watch?v=FEydcr4wJw0;License: Standard Youtube License