Power System Analysis and Design (MindTap Course List)
6th Edition
ISBN: 9781305632134
Author: J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 2, Problem 2.20P
A circuit consists of two impedances,
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
A linear electrical load draws 11 A at a 0.72 lagging power factor./1 153. When a capacitor is connected, the line current dropped to 122 A and the power factor
improved to 0.98 lagging. Supply frequency is 50 Hz.
a. Let the current drawn from the source before and after introduction of the capacitor be 11 and 12
respectively. Take the source voltage as the reference and express 11 and 12 as vector
quantities in polar form.
b. Obtain the capacitor current, IC = 12 - 11, graphically as well as using complex number
manipulation. Compare the results.
c. Express the waveforms of the source current before (11(t)) and after (12(t)) introduction of the
capacitor in the form Im sin(2лft + 0). Hand sketch them on the same graph. Clearly label your
plots.
d. Analytically solve i2(t) – i1(t) using the theories of trigonometry to obtain the capacitor current
in the form, ¡C(t) = ICm sin(2πft + OC). Compare the result with the result in Part b.
Transmission line data:Data:• Active power of the load (P): 50 kW• Power factor of the load (PF): 0.8 (lagging)• Line-to-line voltage at the load (V_LC): 13.8 kV• Line resistance (R): 2 Ω• Line inductance (L): 0.8 H• Line capacitance (C): 0.0003 F• Required series compensation: 60% of the line impedance.• Line length: 250 kmDetermine:1. Characteristic impedance and propagation constant.2. The generalized long line constants A, B, C, D.3. Total voltage, current and power at the generating end.4. Voltage regulation.5. Parameters A, B, C, D of the compensation circuit.6. New generalized constants of the power system afterseries compensation.7. Conclusion of the results obtained.
3.18
In a single-phase half-wave ac-dc converter, the average value of the load
current is 1.78 A. If the converter is operated from a 240 V, 50 Hz supply
and if the average value of the output voltage is 27% of the maximum
possible value, calculate the following, assume the load to be resistive.
(a) Load resistance
(b) Firing angle
(c) Average output voltage
(d) The rms load voltage
(e) The rms load current
(f) DC power
(g) AC power
(h) Rectifier efficiency
(i) Form factor
(j) Ripple factor
Chapter 2 Solutions
Power System Analysis and Design (MindTap Course List)
Ch. 2 - The rms value of v(t)=Vmaxcos(t+) is given by a....Ch. 2 - If the rms phasor of a voltage is given by V=12060...Ch. 2 - If a phasor representation of a current is given...Ch. 2 - Prob. 2.4MCQCh. 2 - Prob. 2.5MCQCh. 2 - Prob. 2.6MCQCh. 2 - Prob. 2.7MCQCh. 2 - Prob. 2.8MCQCh. 2 - Prob. 2.9MCQCh. 2 - The average value of a double-frequency sinusoid,...
Ch. 2 - The power factor for an inductive circuit (R-L...Ch. 2 - The power factor for a capacitive circuit (R-C...Ch. 2 - Prob. 2.13MCQCh. 2 - The instantaneous power absorbed by the load in a...Ch. 2 - Prob. 2.15MCQCh. 2 - With generator conyention, where the current...Ch. 2 - Consider the load convention that is used for the...Ch. 2 - Prob. 2.18MCQCh. 2 - The admittance of the impedance j12 is given by...Ch. 2 - Consider Figure 2.9 of the text, Let the nodal...Ch. 2 - The three-phase source line-to-neutral voltages...Ch. 2 - In a balanced three-phase Y-connected system with...Ch. 2 - In a balanced system, the phasor sum of the...Ch. 2 - Consider a three-phase Y-connected source feeding...Ch. 2 - For a balanced- load supplied by a balanced...Ch. 2 - A balanced -load can be converted to an...Ch. 2 - When working with balanced three-phase circuits,...Ch. 2 - The total instantaneous power delivered by a...Ch. 2 - The total instantaneous power absorbed by a...Ch. 2 - Under balanced operating conditions, consider the...Ch. 2 - One advantage of balanced three-phase systems over...Ch. 2 - While the instantaneous electric power delivered...Ch. 2 - Given the complex numbers A1=630 and A2=4+j5, (a)...Ch. 2 - Convert the following instantaneous currents to...Ch. 2 - The instantaneous voltage across a circuit element...Ch. 2 - For the single-phase circuit shown in Figure...Ch. 2 - A 60Hz, single-phase source with V=27730 volts is...Ch. 2 - (a) Transform v(t)=75cos(377t15) to phasor form....Ch. 2 - Let a 100V sinusoidal source be connected to a...Ch. 2 - Consider the circuit shown in Figure 2.23 in time...Ch. 2 - For the circuit shown in Figure 2.24, compute the...Ch. 2 - For the circuit element of Problem 2.3, calculate...Ch. 2 - Prob. 2.11PCh. 2 - The voltage v(t)=359.3cos(t)volts is applied to a...Ch. 2 - Prob. 2.13PCh. 2 - A single-phase source is applied to a...Ch. 2 - Let a voltage source v(t)=4cos(t+60) be connected...Ch. 2 - A single-phase, 120V(rms),60Hz source supplies...Ch. 2 - Consider a load impedance of Z=jwL connected to a...Ch. 2 - Let a series RLC network be connected to a source...Ch. 2 - Consider a single-phase load with an applied...Ch. 2 - A circuit consists of two impedances, Z1=2030 and...Ch. 2 - An industrial plant consisting primarily of...Ch. 2 - The real power delivered by a source to two...Ch. 2 - A single-phase source has a terminal voltage...Ch. 2 - A source supplies power to the following three...Ch. 2 - Consider the series RLC circuit of Problem 2.7 and...Ch. 2 - A small manufacturing plant is located 2 km down a...Ch. 2 - An industrial load consisting of a bank of...Ch. 2 - Three loads are connected in parallel across a...Ch. 2 - Prob. 2.29PCh. 2 - Figure 2.26 shows three loads connected in...Ch. 2 - Consider two interconnected voltage sources...Ch. 2 - Prob. 2.35PCh. 2 - Prob. 2.36PCh. 2 - Prob. 2.37PCh. 2 - Prob. 2.38PCh. 2 - Prob. 2.39PCh. 2 - A balanced three-phase 240-V source supplies a...Ch. 2 - Prob. 2.41PCh. 2 - A balanced -connected impedance load with (12+j9)...Ch. 2 - A three-phase line, which has an impedance of...Ch. 2 - Two balanced three-phase loads that are connected...Ch. 2 - Two balanced Y-connected loads, one drawing 10 kW...Ch. 2 - Three identical impedances Z=3030 are connected in...Ch. 2 - Two three-phase generators supply a three-phase...Ch. 2 - Prob. 2.48PCh. 2 - Figure 2.33 gives the general -Y transformation....Ch. 2 - Consider the balanced three-phase system shown in...Ch. 2 - A three-phase line with an impedance of...Ch. 2 - A balanced three-phase load is connected to a...Ch. 2 - What is a microgrid?Ch. 2 - What are the benefits of microgrids?Ch. 2 - Prob. CCSQCh. 2 - Prob. DCSQ
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, electrical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Disassemmble In another way f(t) = [sin(200πt) - cos(300πt)]2arrow_forward☑ 口 ☐ : Homework help starts here! Home | bartleby → https://www.bartleby.com Answered: Decompose using relationships 3 S(+) = 50 sin 3 (500πiz) | bartleby ASK AN EXPERT √ MATH SOLVER Decompose using relationships 3 S(+) = 50 sin 3 (500... Steps "Disassemble in another way." f(+)= 50 Sin³ (500+) Step 1 To decompose f(t)=50 Sin³ (500x+), use trigonometric indentity for Sin³ (e) Sin³ (0)- 3 Sin (e)-Sin (30) 4 Step2: Apply indentity to f(t). f(+)= 50 Sin³ (500+) = 50. 3 Sin (500+) - Sin (3*500π+) = 50. = = 12.5 4 3 Sin (500+)-Sin (1500+) 4 [3 Sin (580x+)-Sin (1500x+)] 37.5 Sin (500+)-12.5 Sin (1500π+) final decomposed form is, PM 05:2 19/12/2024 દ ))^ C W E × م اكتب هنا للبحثarrow_forward6) The principal of DIT hire you to design PBAX with 120 phones. Assuming the number of call is 3/hour/line, the average call duration is 4 minutes, and 55% of all call are made external via a T-1 trunk (24 channels) to the PSTN. Determine carried traffic and channel usage.arrow_forward
- Need a solufor number 2arrow_forwardDecompose using relationships 3 S(+) = 50 sin ³ (500πiz)arrow_forwardA linear electrical load draws I₁ A at a 0.72 lagging power factor. 11 = 153 When a capacitor is connected, the line current dropped to 122 A and the power factor improved to 0.98 lagging. Supply frequency is 50 Hz. a. Let the current drawn from the source before and after introduction of the capacitor be 1₁ and 12 respectively. Take the source voltage as the reference and express 11 and 12 as vector quantities in polar form. b. Obtain the capacitor current, Ic = I2 − I₁, graphically as well as using complex number manipulation. Compare the results. c. Express the waveforms of the source current before (i₁(t)) and after (i2(t)) introduction of the capacitor in the form Im sin(2лft + 0). Hand sketch them on the same graph. Clearly label your plots. d. Analytically solve i₂ (t) - i₁ (t) using the theories of trigonometry to obtain the capacitor current in the form, ic (t) = 1cm sin(2´ft + 0c). Compare the result with the result in Part b.arrow_forward
- I need a solution from an expert without artificial intelligence. Choose the correct answer 1. The convolution of two signals in time domain is equivalent to (addition, subtraction, multiplication, division). 2. The Fourier transform of non-periodic signal is random). 3. In ASK). in frequency domain signal. (discrete, continuous, digital, the pulse location is proportional to the amplitude of the signal. (PAM, PWM, PPM 4. In TDM the input signals must have (the same maximum frequency, the same sampling frequency, the same bit rate, the same amplitude). 5. The Delta Modulation is equivalent to (1-bit DPCM, 2-bit DPCM, n-bit PCM, PSK). bandwidth when compared to the NRZ 6. In baseband digital transmission, the RZ signal has signal. (less, greater, equal, not related). 7. In Differential Manchester code, the shapes of "1" and "0" are, each other, next bit dependent, not related to each other). (the same, opposite to 8. In multi-level digital carrier system R, is _ R₁. (equal to, less…arrow_forwardI need a solution from an expert without artificial intelligence. Choose the correct answer: 1. In AMI code, the shapes of "1" and "O" are, bit dependent, not related to each other). 2. In FDM the guard band is used to decrease, maintain, not related to). 3. Higher number of levels in PCM produces (the same, opposite to each other, next the overlap between FDM signals. (increase, (higher quantization error, less number of bits per sample, lower quantization error, the same number of bits per sample). 4. If the maximum shift in frequency is 70 kHz and the minimum deviation in frequency of the actual signal is 109.93 MHz, what is the carrier frequency? (110 MHz, 110 kHz, 107 kHz, 102 MHz) Fc 5. TDM of signals requires them to have the same amplitude, sampling frequency, energy). 6. In standard AM, the last step in the transmitter is subtracting, multiplying, dividing). . In digital carrier systems, PSK). (maximum frequency, maximum the carrier signal. (adding, has higher bandwidth. (ASK,…arrow_forwardNeed Handwritten solution step by steparrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Power System Analysis and Design (MindTap Course ...Electrical EngineeringISBN:9781305632134Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. SarmaPublisher:Cengage LearningElectricity for Refrigeration, Heating, and Air C...Mechanical EngineeringISBN:9781337399128Author:Russell E. SmithPublisher:Cengage Learning
Power System Analysis and Design (MindTap Course ...
Electrical Engineering
ISBN:9781305632134
Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher:Cengage Learning
Electricity for Refrigeration, Heating, and Air C...
Mechanical Engineering
ISBN:9781337399128
Author:Russell E. Smith
Publisher:Cengage Learning
Lesson 2 - Source Transformations, Part 2 (Engineering Circuits); Author: Math and Science;https://www.youtube.com/watch?v=7gno74RhVGQ;License: Standard Youtube License