Power System Analysis and Design (MindTap Course List)
6th Edition
ISBN: 9781305632134
Author: J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 2, Problem 2.13MCQ
To determine
The average reactive power.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
The single phase AC sinusoidal voltage then the rms value of the voltage v is .........
can you doing this with detail explaination..thank you!
If, in one (360 degrees), all of the instantaneous power falls under positive loops (no negativeloops), the load must be:a. A resistorb. An inductor or capacitorExplain:
Chapter 2 Solutions
Power System Analysis and Design (MindTap Course List)
Ch. 2 - The rms value of v(t)=Vmaxcos(t+) is given by a....Ch. 2 - If the rms phasor of a voltage is given by V=12060...Ch. 2 - If a phasor representation of a current is given...Ch. 2 - Prob. 2.4MCQCh. 2 - Prob. 2.5MCQCh. 2 - Prob. 2.6MCQCh. 2 - Prob. 2.7MCQCh. 2 - Prob. 2.8MCQCh. 2 - Prob. 2.9MCQCh. 2 - The average value of a double-frequency sinusoid,...
Ch. 2 - The power factor for an inductive circuit (R-L...Ch. 2 - The power factor for a capacitive circuit (R-C...Ch. 2 - Prob. 2.13MCQCh. 2 - The instantaneous power absorbed by the load in a...Ch. 2 - Prob. 2.15MCQCh. 2 - With generator conyention, where the current...Ch. 2 - Consider the load convention that is used for the...Ch. 2 - Prob. 2.18MCQCh. 2 - The admittance of the impedance j12 is given by...Ch. 2 - Consider Figure 2.9 of the text, Let the nodal...Ch. 2 - The three-phase source line-to-neutral voltages...Ch. 2 - In a balanced three-phase Y-connected system with...Ch. 2 - In a balanced system, the phasor sum of the...Ch. 2 - Consider a three-phase Y-connected source feeding...Ch. 2 - For a balanced- load supplied by a balanced...Ch. 2 - A balanced -load can be converted to an...Ch. 2 - When working with balanced three-phase circuits,...Ch. 2 - The total instantaneous power delivered by a...Ch. 2 - The total instantaneous power absorbed by a...Ch. 2 - Under balanced operating conditions, consider the...Ch. 2 - One advantage of balanced three-phase systems over...Ch. 2 - While the instantaneous electric power delivered...Ch. 2 - Given the complex numbers A1=630 and A2=4+j5, (a)...Ch. 2 - Convert the following instantaneous currents to...Ch. 2 - The instantaneous voltage across a circuit element...Ch. 2 - For the single-phase circuit shown in Figure...Ch. 2 - A 60Hz, single-phase source with V=27730 volts is...Ch. 2 - (a) Transform v(t)=75cos(377t15) to phasor form....Ch. 2 - Let a 100V sinusoidal source be connected to a...Ch. 2 - Consider the circuit shown in Figure 2.23 in time...Ch. 2 - For the circuit shown in Figure 2.24, compute the...Ch. 2 - For the circuit element of Problem 2.3, calculate...Ch. 2 - Prob. 2.11PCh. 2 - The voltage v(t)=359.3cos(t)volts is applied to a...Ch. 2 - Prob. 2.13PCh. 2 - A single-phase source is applied to a...Ch. 2 - Let a voltage source v(t)=4cos(t+60) be connected...Ch. 2 - A single-phase, 120V(rms),60Hz source supplies...Ch. 2 - Consider a load impedance of Z=jwL connected to a...Ch. 2 - Let a series RLC network be connected to a source...Ch. 2 - Consider a single-phase load with an applied...Ch. 2 - A circuit consists of two impedances, Z1=2030 and...Ch. 2 - An industrial plant consisting primarily of...Ch. 2 - The real power delivered by a source to two...Ch. 2 - A single-phase source has a terminal voltage...Ch. 2 - A source supplies power to the following three...Ch. 2 - Consider the series RLC circuit of Problem 2.7 and...Ch. 2 - A small manufacturing plant is located 2 km down a...Ch. 2 - An industrial load consisting of a bank of...Ch. 2 - Three loads are connected in parallel across a...Ch. 2 - Prob. 2.29PCh. 2 - Figure 2.26 shows three loads connected in...Ch. 2 - Consider two interconnected voltage sources...Ch. 2 - Prob. 2.35PCh. 2 - Prob. 2.36PCh. 2 - Prob. 2.37PCh. 2 - Prob. 2.38PCh. 2 - Prob. 2.39PCh. 2 - A balanced three-phase 240-V source supplies a...Ch. 2 - Prob. 2.41PCh. 2 - A balanced -connected impedance load with (12+j9)...Ch. 2 - A three-phase line, which has an impedance of...Ch. 2 - Two balanced three-phase loads that are connected...Ch. 2 - Two balanced Y-connected loads, one drawing 10 kW...Ch. 2 - Three identical impedances Z=3030 are connected in...Ch. 2 - Two three-phase generators supply a three-phase...Ch. 2 - Prob. 2.48PCh. 2 - Figure 2.33 gives the general -Y transformation....Ch. 2 - Consider the balanced three-phase system shown in...Ch. 2 - A three-phase line with an impedance of...Ch. 2 - A balanced three-phase load is connected to a...Ch. 2 - What is a microgrid?Ch. 2 - What are the benefits of microgrids?Ch. 2 - Prob. CCSQCh. 2 - Prob. DCSQ
Knowledge Booster
Similar questions
- The instantaneous voltage across a circuit element is v(t)=400sin(t+30)volts, and the instantaneous current entering the positive terminal of the circuit element is i(t)=100cos(t+10)A. For both the current and voltage, determine (a) the maximum value, (b) the rms value, and (C) the phasor expression, using cos(t) as the reference.arrow_forwardLet a 100V sinusoidal source be connected to a series combination of a 3 resistor, an 8 inductor, and a 4 capacitor. (a) Draw the circuit diagram. (b) Compute the series impedance. (C) Determine the current I delivered by the source. Is the current lagging or leading the source voltage? What is the power factor of this circuit?arrow_forwardThe instantaneous power absorbed by the load in a single-phase ac circuit, for a general R LC load under sinusoidal-steady-state excitation. is (a) Nonzero constant (b) Zero (c) Containing double-frequency componentsarrow_forward
- An industrial load consisting of a bank of induction motors consumes 50 kW at a power factor of 0.8 lagging from a 220-V,60-Hz, single-phase source. By placing a bank of capacitors in parallel with the load, the resultant power factor is to be raised to 0.95 lagging. Find the net capacitance of the capacitor bank in F that is required.arrow_forwardFor the phasor diagram in figure 6 express the voltages in sinusoids for a period of 5ms. Im Re )e,=45° e,=20 Vz=10 V2=8 Figure 7 a. Va(t)=. b. V2(t)=. c. What is the rms voltage of V1 = d. What is the rms voltage of V2=_ e. What is the frequency in Hz = f. What is the angular frequency =. In terms of lagging and leading what is the exact phase relationship between V, (t) and V2(t) g.arrow_forwardPlease help with the solution.arrow_forward
- choose the correct option for ac circuitarrow_forward2.14 The current waveforms of la capocitov are avesage peak cursend *atings of 1, =500 A of shown in Fiquse Determine square (rms), and capacitor. Assume, The root mean half sine -wave t = loo us -300 AS t3 Soo Ns f, -250HZ T2 200arrow_forwardDraw the sinusoidal waveform of the AC voltage and current for the given loads below. Describe the characteristics of the waveform for each load. A. Pure resistor B. Pure inductor C. Pure capacitorarrow_forward
- Aside from the typical RLC circuit arranged in series, there exist that arranged in parallel as well (see Figure 3). In this configuration, the instantaneous voltages (and rms voltages) across cach of the three circuit elements are the same, and cach is in phase with the current in the resistor. The currents in C and L lead or lag the current in the resistor as shown in the phasor diagram (Figure 3b). By taking the instantaneous voltage across the AC source to be v(t) =V sin er and the instantaneous current provided by the AC source to be i(r) =, sin (er - ø). where V, and are the voltage and current amplitudes respectively, (a) (b) AV AV R. gure 3: (a) RLC circuit in parallel configuration and (b) phasor diagram for the RLC circuit. (a). Write the instantaneous currents across the three circuit elements in terms of angular frequency o, inductance L, and capacitance C. (b). Relate for the ratio of the rms voltage and current towards the ratio of the amplitude voltage and current. (c).…arrow_forwardQ2. For the circuit shown below, sketch the current waveforms iş and io and determine the Average and RMS for both currents. a = 50° TI 50 2 Vs = 300 sin 100zt ( cot T2 in cotarrow_forwardI need handwritten only otherwise i will dislike for sure and both parts otherwise skip I'll dislikearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Power System Analysis and Design (MindTap Course ...Electrical EngineeringISBN:9781305632134Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. SarmaPublisher:Cengage Learning
Power System Analysis and Design (MindTap Course ...
Electrical Engineering
ISBN:9781305632134
Author:J. Duncan Glover, Thomas Overbye, Mulukutla S. Sarma
Publisher:Cengage Learning