Thermodynamics, Statistical Thermodynamics, & Kinetics
3rd Edition
ISBN: 9780321766182
Author: Thomas Engel, Philip Reid
Publisher: Prentice Hall
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 2, Problem 2.18NP
An ideal gas undergoes an expansion from the initial state described by
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Solve it correctly please. I
A sample of an ideal gas undergoes the cycle A to B to C to D to A. depicted below. All four steps of the cycle can be considered reversible processes. For this gas, Cv=1.5R. There are no properities of gas here. All the information is provided on the graph.
Calculate q, w, deltaU, deltaH, deltaS for each step and for the entire cycle. Please clearly label and box your answers in the form of a table.
Hint: Start by calculating the number of moles
5. What would be the final volume occupied by 1.0 mol of an ideal gas
initially at 0°C and 1.0 bar if Q = 1000J during a reversible isothermal
expansion?
Chapter 2 Solutions
Thermodynamics, Statistical Thermodynamics, & Kinetics
Ch. 2 - Electrical current is passed through a resistor...Ch. 2 - Two ideal gas systems undergo reversible expansion...Ch. 2 - You have a liquid and its gaseous form in...Ch. 2 - Prob. 2.4CPCh. 2 - For a constant pressure process, H=qp. Does it...Ch. 2 - A cup of water at 278 K (the system) is placed in...Ch. 2 - In the experiments shown in Figure 2.4a and 2.4b,...Ch. 2 - What is wrong with the following statement? Burns...Ch. 2 - Why is it incorrect to speak of the heat or work...Ch. 2 - You have a liquid and its gaseous form in...
Ch. 2 - Prob. 2.11CPCh. 2 - Explain how a mass of water in the surroundings...Ch. 2 - A chemical reaction occurs in a constant volume...Ch. 2 - Explain the relationship between the terms exact...Ch. 2 - In the experiment shown in Figure 2.4b, the weight...Ch. 2 - Discuss the following statement: If the...Ch. 2 - Discuss the following statement: Heating an object...Ch. 2 - An ideal gas is expanded reversibly and...Ch. 2 - An ideal gas is expanded reversibly and...Ch. 2 - An ideal gas is expanded adiabatically into a...Ch. 2 - Prob. 2.21CPCh. 2 - Prob. 2.22CPCh. 2 - A student gets up from her chair and pushes a...Ch. 2 - Explain why ethene has a higher value for CV,m at...Ch. 2 - Prob. 2.25CPCh. 2 - Prob. 2.26CPCh. 2 - A 3.75 mole sample of an ideal gas with Cv,m=3R/2...Ch. 2 - The temperature of 1.75 moles of an ideal gas...Ch. 2 - A 2.50 mole sample of an ideal gas, for which...Ch. 2 - A hiker caught in a thunderstorm loses heat when...Ch. 2 - Count Rumford observed that using cannon boring...Ch. 2 - A 1.50 mole sample of an ideal gas at 28.5C...Ch. 2 - Calculate q, w, U, and H if 2.25 mol of an ideal...Ch. 2 - Calculate w for the adiabatic expansion of 2.50...Ch. 2 - Prob. 2.9NPCh. 2 - A muscle fiber contracts by 3.5 cm and in doing so...Ch. 2 - A cylindrical vessel with rigid adiabatic walls is...Ch. 2 - In the reversible adiabatic expansion of 1.75 mol...Ch. 2 - A system consisting of 82.5 g of liquid water at...Ch. 2 - A 1.25 mole sample of an ideal gas is expanded...Ch. 2 - A bottle at 325 K contains an ideal gas at a...Ch. 2 - A 2.25 mole sample of an ideal gas with Cv,m=3R/2...Ch. 2 - Prob. 2.17NPCh. 2 - An ideal gas undergoes an expansion from the...Ch. 2 - An ideal gas described by Ti=275K,Pi=1.10bar, and...Ch. 2 - In an adiabatic compression of one mole of an...Ch. 2 - The heat capacity of solid lead oxide is given by...Ch. 2 - Prob. 2.22NPCh. 2 - Prob. 2.23NPCh. 2 - Prob. 2.24NPCh. 2 - Prob. 2.25NPCh. 2 - A 2.50 mol sample of an ideal gas for which...Ch. 2 - A 2.35 mole sample of an ideal gas, for which...Ch. 2 - Prob. 2.28NPCh. 2 - A nearly flat bicycle tire becomes noticeably...Ch. 2 - Prob. 2.30NPCh. 2 - Prob. 2.31NPCh. 2 - Consider the isothermal expansion of 2.35 mol of...Ch. 2 - An automobile tire contains air at 225103Pa at...Ch. 2 - One mole of an ideal gas is subjected to the...Ch. 2 - Prob. 2.35NPCh. 2 - A pellet of Zn of mass 31.2 g is dropped into a...Ch. 2 - Calculate H and U for the transformation of 2.50...Ch. 2 - A 1.75 mole sample of an ideal gas for which...Ch. 2 - Prob. 2.39NPCh. 2 - Prob. 2.40NPCh. 2 - The Youngs modulus (see Problem P2.40) of muscle...Ch. 2 - DNA can be modeled as an elastic rod that can be...Ch. 2 - Prob. 2.43NPCh. 2 - Prob. 2.44NP
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- What are the numerical values of the heat capacities c-v and c-p of a monatomic ideal gas,in units of cal/mol.K and L.atm/mol.K?arrow_forwardShow that = T/p for an ideal gas.arrow_forwardA sample of an ideal diatomic gas is compressed adiabatically and reversibly to double its initial pressure. By what percentage does its absolute temperature change in a the low-temperature limit and b the high-temperature limit?arrow_forward
- Use the data in Table 2.2 to determine Hp T for Ar at 0C and 1atm. Make any reasonable assumptions necessary.arrow_forwardAsampleof a monatomic ideal gas doubles itsvolume reversibly and adiabatically. By what percentage does its absolute temperature change?arrow_forwardUnder what conditions will U be exactly zero for a process whose initial conditions are not thesame as its final conditions?arrow_forward
- What is the finaltemperature of0.122 mole ofmonatomic ideal gas that performs 75J of work adiabatically if the initial temperature is 235C?arrow_forwardWhy is equation2.37 written interms of CV and Cp and not c-v and c-p ?arrow_forwardMany compressed gases come in large,heavy metal cylindersthat are so heavy that they need a special cart to move them around. An80.0-Ltank ofnitrogen gas pressurized to 172 atm is left in the sun and heats from its normal temperature of 20.0C to 140.0C. Determine a the final pressureinsidethe tank and b the work, heat, and U of the process. Assume that behavior is ideal and the heatcapacity of diatomic nitrogenis 21.0J/mol.K.arrow_forward
- Define isobaric,isochoric, isenthalpic,and isothermal. Can achangein a gaseous system be isobaric, isochoric,and isothermal at the same time? Why or why not?arrow_forwardAssume N₂ behaves as perfect gas. It expands reversibly and adiabatically from Vi to Vf with the pressure change from pi to pf. (a) Derive the temperature versus volume relationship and the pressure and volume relationship for this expansion. (b) When a sample of N₂ of mass 3.12 g at 23.0 °C is allowed to expand reversibly and adiabatically from 4.00 × 10² cm3 to 2.00 dm3, what is the work done by the gas?arrow_forwardCalculate AS, AStot, and AS sur when the volume of 175 g of CO initially at 273 K and 1.00 bar increases by a factor of three in an adiabatic reversible expansion. Take Cp,m to be constant at the value 29.14 J-mol-¹.K-¹ and assume ideal gas behavior. The temperature of the surroundings is 273 K. Express your answers in joules per kelvin to three significant figures separated by commas. AS, AStot, AS sur = Submit Request Answer Part B IVE ΑΣΦ AS, AStot, AS sur = Calculate AS, AStot, and ASsur when the volume of 175 g of CO initially at 273 K and 1.00 bar increases by a factor of three in an expansion against Pext = 0. Take CP,m to be constant at the value 29.14 J. mol-¹.K-¹ and assume ideal gas behavior. The temperature of the surroundings is 273 K. Express your answers in joules per kelvin to three significant figures separated by commas. IVE ΑΣΦ ? 2 J.K-1 ? J.K-1arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistry: Principles and ReactionsChemistryISBN:9781305079373Author:William L. Masterton, Cecile N. HurleyPublisher:Cengage Learning
Physical Chemistry
Chemistry
ISBN:9781133958437
Author:Ball, David W. (david Warren), BAER, Tomas
Publisher:Wadsworth Cengage Learning,
Principles of Modern Chemistry
Chemistry
ISBN:9781305079113
Author:David W. Oxtoby, H. Pat Gillis, Laurie J. Butler
Publisher:Cengage Learning
Chemistry: Principles and Reactions
Chemistry
ISBN:9781305079373
Author:William L. Masterton, Cecile N. Hurley
Publisher:Cengage Learning
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY