Physical Chemistry
2nd Edition
ISBN: 9781133958437
Author: Ball, David W. (david Warren), BAER, Tomas
Publisher: Wadsworth Cengage Learning,
expand_more
expand_more
format_list_bulleted
Textbook Question
Chapter 2, Problem 2.32E
Many compressed gases come in large, heavy metal cylinders that are so heavy that they need a special cart to move them around. An 80.0-L tank of nitrogen gas pressurized to 172 atm is left in the sun and heats from its normal temperature of 20.0°C to 140.0°C. Determine (a) the final pressure inside the tank and (b) the work, heat, and ∆U of the process. Assume that behavior is ideal and the heat capacity of diatomic nitrogen is 21.0 J/mol.K.
Expert Solution & Answer
Trending nowThis is a popular solution!
Chapter 2 Solutions
Physical Chemistry
Ch. 2 - Calculatethe work performed by a person whoexertsa...Ch. 2 - Explain inyour own words why work done by the...Ch. 2 - Calculate the work in joules when a piston moves...Ch. 2 - Calculatethe work on the system whena piston is...Ch. 2 - Calculatethe work in joules needed to expanda...Ch. 2 - Consider exercise 2.5. Would the workbe more or...Ch. 2 - Apistonhaving0.033 mol ofgas at 35.0Cexpands...Ch. 2 - A bottle of soda has a head space containing 25.0...Ch. 2 - Prob. 2.9ECh. 2 - Calculate the specific heat of a material if 288J...
Ch. 2 - There is 3930 J of energy added to a 79.8-g sample...Ch. 2 - If the heat capacity varies withtemperature,...Ch. 2 - Liquid hydrogen fluoride, liquid water,and liquid...Ch. 2 - A 5-mmdiameter hailstone has a terminal velocity...Ch. 2 - A7.50-gpiece of iron at 100.0C is dropped into...Ch. 2 - With reference to Joules apparatus inFigure2.6,...Ch. 2 - Prob. 2.17ECh. 2 - True or false: Althoughwork done bya free...Ch. 2 - What arethe differencesbetween an open, a closed,...Ch. 2 - The statement Energycan beneithercreatednor...Ch. 2 - Prob. 2.21ECh. 2 - What is the change in internal energy when a gas...Ch. 2 - Calculate the work for the isothermal, reversible...Ch. 2 - Calculate the work donewhen 1.000 mole of an ideal...Ch. 2 - Apistonhaving0.033 mol of gas at 35.0C expands...Ch. 2 - Prob. 2.26ECh. 2 - Indicate which state function is equal to heat, q,...Ch. 2 - The distance between downtown San Francisco and...Ch. 2 - Is temperature astate function?Defend your answer.Ch. 2 - A piston reversibly and adiabatically contracts...Ch. 2 - Calculate U when 1.00 mol of H2 goes from 1.00...Ch. 2 - Many compressed gases come in large,heavy metal...Ch. 2 - Under what conditions will U be exactly zero for a...Ch. 2 - Aballoon filled with 0.505 mole of gascontracts...Ch. 2 - A piston having 7.23 g of steam at 110 C increases...Ch. 2 - It takes 2260 J to vaporize a gram of liquid water...Ch. 2 - True or false: Any process for which H is negative...Ch. 2 - Prob. 2.38ECh. 2 - A refrigerator contains approximately 17cubic...Ch. 2 - In a constant-volume calorimeter, 35.0g of H2cools...Ch. 2 - A 2.50-mol sample of gas is compressed...Ch. 2 - A 244-g amount of coffee in an open plastic cup...Ch. 2 - Prob. 2.43ECh. 2 - Starting with equation 2.27 andthe original...Ch. 2 - Derive the fact that HpT is also zero for an ideal...Ch. 2 - Define isobaric,isochoric, isenthalpic,and...Ch. 2 - Starting from the cyclicrule involvingthe Joule-...Ch. 2 - The ideal gas law is theequation of state for an...Ch. 2 - Prob. 2.49ECh. 2 - Estimatethe final temperature of a mole of gas at...Ch. 2 - With regard to exercise 2.50, how accurate do you...Ch. 2 - Use the data in Table 2.2 to determine Hp T for Ar...Ch. 2 - Use the data in Table 2.2 to determine PH T for N2...Ch. 2 - Someone proposes thatthe Joule-Thomson coefficient...Ch. 2 - Why is equation2.37 written interms of CV and Cp...Ch. 2 - What are the numerical values of the heat...Ch. 2 - In a constant-pressure calorimeter that is, one...Ch. 2 - What is the finaltemperature of0.122 mole...Ch. 2 - Prob. 2.59ECh. 2 - Show that =5/3 for a monatomic ideal gas.Ch. 2 - Prob. 2.61ECh. 2 - Prob. 2.62ECh. 2 - A 1.00 mol sample of H2 is carefully warmed from...Ch. 2 - Asampleof a monatomic ideal gas doubles itsvolume...Ch. 2 - A sample of an ideal diatomic gas is compressed...Ch. 2 - In orbit about Earth, a weather balloonjettisons a...Ch. 2 - Prob. 2.67ECh. 2 - Prob. 2.68ECh. 2 - If pumping up an automobile tire is assumed to be...Ch. 2 - Prob. 2.70ECh. 2 - Take the volume change into account and calculate...Ch. 2 - How much work is performed by 1 mole of water...Ch. 2 - Why are steam burns so much worse than water burns...Ch. 2 - How many grams of water at 0C will be melted by...Ch. 2 - Draw a diagram like Figure 2.11 that illustrates...Ch. 2 - Determine the rxnH(25C) of the following reaction:...Ch. 2 - Determine rxnH 25 C for the following reaction: NO...Ch. 2 - The enthalpy of combustion of...Ch. 2 - The enthalpy of combustion of diamond is -395.4...Ch. 2 - Using Hesss law, writeout allof the formation...Ch. 2 - Sublimation is the phase change from solid to gas...Ch. 2 - The thermite reaction combines aluminum powder and...Ch. 2 - Benzoic acid, C6H5COOH, is a common standard used...Ch. 2 - Assume that 1.20 g of benzoicacid, C6H5COOH, is...Ch. 2 - Natural gas is mostly CH4. When it burns, the...Ch. 2 - Assuming constant heatcapacities for products and...Ch. 2 - Use the heat capacities of the products and...Ch. 2 - The following are values of heat capacity for...Ch. 2 - Prob. 2.89ECh. 2 - Prob. 2.90ECh. 2 - The Dieterici equation of state for one mole of...Ch. 2 - Prob. 2.92ECh. 2 - Find the enthalpies of the combustion reactions...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, chemistry and related others by exploring similar questions and additional content below.Similar questions
- What is the change in internal energy when a gas contracts from 377mL to 119mLundera pressure of 1550 torr, whileat the same time being cooled by removing 124.0J ofheat energy?arrow_forwardThe enthalpy of combustion of diamond is -395.4 kJ/mol. C s, dia O2 g CO2 g Determine the fH of C s, dia.arrow_forward2. In which of the following reactions is there a significant transfer of energy as work from the system to the surroundings? This occurs if there is a change in the number of moles of gases. C(s) + O2(g) → CO2(g) CH4(g) + 2 O2(g) → CO2g) + 2 H2O(g) 2 C(s) + O2(g) → 2 CO(g) 2 Mg(s) + O2(g) → 2 MgO(s)arrow_forward
- In 2010, 3.30109 gallons of gasoline were consumed in the United States. The following assumptions can be made: • Gasoline is mainly n-octane, C8H18(d=0.7028g/mL). • Burning one mole of n-octane in oxygen releases 5564.2 kJ of heat. • The heat capacity C of the surface region of the earth is 2.61023 J/K. What is the increase in temperature of the surface region of the earth due to gasoline consumption in the United States?arrow_forwardNitrogen gas (2.75 L) is confined in a cylinder under constant atmospheric pressure (1.01 105 pascals). The volume of gas decreases to 2.10 L when 485 J of energy is transferred as heat to the surroundings. What is the change in internal energy of the gas?arrow_forwardWhat are the two ways that a final chemical state of a system can be more probable than its initial state?arrow_forward
- You did an experiment in which you found that 59.8 J was required to raise the temperature of 25.0 g of ethylene glycol (a compound used as antifreeze in automobile engines) by 1.00 K. Calculate the specific heat capacity of ethylene glycol from these data.arrow_forwardBenzoic acid, C6H5COOH, is a common standard used in bomb calorimeters, which maintain a constant volume. If 1.20 g of benzoic acid gives off 31, 723 J of energy when burned in the presence of excess oxygen and in a water bath having a temperature of 24.6 C, calculate q, w, H, and U for the reaction.arrow_forwardIn the 1880s, Frederick Trouton noted that the enthalpy of vaporization of 1 mol pure liquid is approximately 88 times the boiling point, Tb, of the liquid on the Kelvin scale. This relationship is called Troutons rule and is represented by the thermochemical equation liquid gas H = 88 Tb, joules Combined with an empirical formula from chemical analysis, Troutons rule can be used to find the molecular formula of a compound, as illustrated here. A compound that contains only carbon and hydrogen is 85.6% C and 14.4% H. Its enthalpy of vaporization is 389 J/g, and it boils at a temperature of 322 K. (a) What is the empirical formula of this compound? (b) Use Troutons rule to calculate the approximate enthalpy or vaporization or one mole of the compound. Combine the enthalpy of vaporization per mole with that same quantity per gram to obtain an approximate molar mass of the compound. (c) Use the results of parts (a) and (b) to find the molecular formula of this compound. Remember that the molecular mass must be exactly a whole-number multiple of the empirical formula mass, so considerable rounding may be needed.arrow_forward
- The formation of aluminum oxide from its elements is highly exothermic. If 2.70 g Al metal is burned in pure O2 to give A12O3, calculate how much thermal energy is evolved in the process (at constant pressure).arrow_forwardDry ice is solid carbon dioxide; it vaporizes at room temperature and normal pressures to the gas. Suppose you put 21.5 g of dry ice in a vessel fitted with a piston (similar to the one in Figure 6.9 but with the weight replaced by the atmosphere), and it vaporizes completely to the gas, pushing the piston upward until its pressure and temperature equal those of the surrounding atmosphere at 24.0C and 751 mmHg. Calculate the work done by the gas in expanding against the atmosphere. Neglect the volume of the solid carbon dioxide, which is very small in comparison to the volume of the gas phase.arrow_forwardWhen 1.000 g of ethylene glycol, C2H6O2, is burned at 25C and 1.00 atmosphere pressure, H2O(l) and CO2(g) are formed with the evolution of 19.18 kJ of heat. a Calculate the molar enthalpy of formation of ethylene glycol. (It will be necessary to use data from Appendix C.) b Gf of ethylene glycol is 322.5 kJ/mol. What is G for the combustion of 1 mol ethylene glycol? c What is S for the combustion of 1 mol ethylene glycol?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Chemistry & Chemical ReactivityChemistryISBN:9781133949640Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry & Chemical ReactivityChemistryISBN:9781337399074Author:John C. Kotz, Paul M. Treichel, John Townsend, David TreichelPublisher:Cengage LearningChemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage Learning
- Chemistry: Principles and PracticeChemistryISBN:9780534420123Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward MercerPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781133949640
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry & Chemical Reactivity
Chemistry
ISBN:9781337399074
Author:John C. Kotz, Paul M. Treichel, John Townsend, David Treichel
Publisher:Cengage Learning
Chemistry: The Molecular Science
Chemistry
ISBN:9781285199047
Author:John W. Moore, Conrad L. Stanitski
Publisher:Cengage Learning
Chemistry: Principles and Practice
Chemistry
ISBN:9780534420123
Author:Daniel L. Reger, Scott R. Goode, David W. Ball, Edward Mercer
Publisher:Cengage Learning
General Chemistry - Standalone book (MindTap Cour...
Chemistry
ISBN:9781305580343
Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; Darrell
Publisher:Cengage Learning
Chemistry
Chemistry
ISBN:9781305957404
Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCoste
Publisher:Cengage Learning
The Laws of Thermodynamics, Entropy, and Gibbs Free Energy; Author: Professor Dave Explains;https://www.youtube.com/watch?v=8N1BxHgsoOw;License: Standard YouTube License, CC-BY