Interpretation:
Equation 2.44 is to be derived from the previous step.
Concept introduction:
Heat capacity (thermal capacity) is the quantity of heat required to raise the temperature of the system from the lower limit to higher divided by the temperature difference of the system. When the mass of the system is taken as 1gram, the heat capacity is denoted as specific heat capacity. Similarly, when the mass of the system taken as 1 mole, the heat capacity is referred as molar heat capacity. Heat capacity is generally described as the symbol C. Mathematically, the heat capacity of the system between two temperature T1 and T2 can be expressed as
C (T2, T1) = q / (T2 – T1)
Intriguingly, the molar heat capacities of gaseous systems are determined at constant volume and can be expressed as
Cv = (δU/δT) v
Answer to Problem 2.59E
The derived expression relating molar capacity at constant volume (Cv) of a system with change in volume (Vf and Vi) and change in temperature (Tf and Ti) is given as;
- R ln (Vf/Vi) = Cv ln (Tf/Ti) (or) R ln (Vi/Vf) = Cv ln (Tf/Ti)
Explanation of Solution
In an adiabatic process, the change in work can be expressed in relationship with change in temperature and change in volume.
on comparing equation (1) and (2) we get the following expression,
Moreover, for an adiabatic process Pex = P int and for an ideal gas PV = nRT; the equation (3) can be changed to,
On rearrangement of equation (4), we get
Thus, integrating the equation (5), we get;
Thus,
On changing the sign of the equation 6, we get the expression relating heat capacity at constant volume and volume and temperature change as,
or equation 2.44
Thus, equation 2.44 is derived from the previous steps.
Want to see more full solutions like this?
Chapter 2 Solutions
Physical Chemistry
- At pil below about 35 woon (Fe) oxidizes in streams according to the following Water in a reservoir at 20°C has a pH of 7.7 and contains the following constituents: Constituent (g) + Conc. (mg/L) Ca2+ 38 HCO3 abiotic oxid 183 HO Ferrous iron under these conditions and at 20°Cis Estimate the activities of Ca2+ and HCO3-, using an appropriate equation to compute the activity coefficients. (atomic weight: Ca 40)arrow_forwarddraw the diagram pleasearrow_forwardShow work with explanation. Don't give Ai generated solutionarrow_forward
- Draw the structure of the acetal derived from 2,2-dimethyl-1,3-propanediol and butanal. Click and drag to start drawing a structure. X G Parrow_forwardPredict the major products of the following reaction. 田 Be sure to use wedge and dash bonds to show the stereochemistry of the products when it's important, for example to distinguish between two different major products. 口 + X C₁₂ Click and drag to start drawing a structure.arrow_forwardH C-OCH H-C=C÷CH₂ IV Questi Predict the correct splitting tree for circled hydrogen in the structure below. A B C III D IVarrow_forward
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,World of ChemistryChemistryISBN:9780618562763Author:Steven S. ZumdahlPublisher:Houghton Mifflin College DivChemistry: Matter and ChangeChemistryISBN:9780078746376Author:Dinah Zike, Laurel Dingrando, Nicholas Hainen, Cheryl WistromPublisher:Glencoe/McGraw-Hill School Pub Co
- Chemistry: The Molecular ScienceChemistryISBN:9781285199047Author:John W. Moore, Conrad L. StanitskiPublisher:Cengage LearningChemistry by OpenStax (2015-05-04)ChemistryISBN:9781938168390Author:Klaus Theopold, Richard H Langley, Paul Flowers, William R. Robinson, Mark BlaserPublisher:OpenStax