H 2 gas has a single vibrational frequency of 1.295 x 10 14 s -1 . The vibrational contribution to the heat capacity, C v (vib) versus temperature from 0 to 2000 K is to be plotted. Concept introduction: Generally, the vibrational partition function of a molecule is derived by incorporating the calculated vibrational energy values into the exponentials and found in notation of C v (vib) and adding everything. heat capacity (thermal capacity) is the quantity of heat required to raise the temperature of the system from the lower limit to higher divided by the temperature difference of the system. When the mass of the system is taken as 1gram, the heat capacity is denoted as specific heat capacity. Similarly, when the mass of the system taken as 1 mole, the heat capacity is referred as molar heat capacity. Heat capacity is generally described as the symbol C. Mathematically, the heat capacity of the system between two temperature T 1 and T 2 can be expressed as C ( T 2 , T 1 ) = q / ( T 2 – T 1 )
H 2 gas has a single vibrational frequency of 1.295 x 10 14 s -1 . The vibrational contribution to the heat capacity, C v (vib) versus temperature from 0 to 2000 K is to be plotted. Concept introduction: Generally, the vibrational partition function of a molecule is derived by incorporating the calculated vibrational energy values into the exponentials and found in notation of C v (vib) and adding everything. heat capacity (thermal capacity) is the quantity of heat required to raise the temperature of the system from the lower limit to higher divided by the temperature difference of the system. When the mass of the system is taken as 1gram, the heat capacity is denoted as specific heat capacity. Similarly, when the mass of the system taken as 1 mole, the heat capacity is referred as molar heat capacity. Heat capacity is generally described as the symbol C. Mathematically, the heat capacity of the system between two temperature T 1 and T 2 can be expressed as C ( T 2 , T 1 ) = q / ( T 2 – T 1 )
H2 gas has a single vibrational frequency of 1.295 x 1014 s-1. The vibrational contribution to the heat capacity, Cv(vib) versus temperature from 0 to 2000 K is to be plotted.
Concept introduction:
Generally, the vibrational partition function of a molecule is derived by incorporating the calculated vibrational energy values into the exponentials and found in notation of Cv(vib) and adding everything. heat capacity (thermal capacity) is the quantity of heat required to raise the temperature of the system from the lower limit to higher divided by the temperature difference of the system. When the mass of the system is taken as 1gram, the heat capacity is denoted as specific heat capacity. Similarly, when the mass of the system taken as 1 mole, the heat capacity is referred as molar heat capacity. Heat capacity is generally described as the symbol C. Mathematically, the heat capacity of the system between two temperature T1 and T2 can be expressed as
C(T2,T1)=q/(T2–T1)
Expert Solution & Answer
Answer to Problem 2.92E
The vibrational partition function is given by Cv>(vib) = 11-e-hϑkT. H2 gas has a single vibrational frequency of 1.295 x 1014 s-1. Therefore, Cv>(vib) at temperatures can be derived and plotted as follows.
Temperature (K)
Cv(vib)
100
≈1
500
≈1
1000
1.00202
1500
1.016
2000
1.047
Explanation of Solution
Given,
The vibrational partition function is given by Cv(vib) = 11-e-hϑkT
Single vibrational frequency of hydrogen = 1.295 x 1014 s-1
4.
a) Give a suitable rationale for the following cyclization, stating the type of process involved
(e.g. 9-endo-dig), clearly showing the mechanistic details at each step.
H
CO₂Me
1) NaOMe
2) H3O®
CO₂Me
2. Platinum and other group 10 metals often act as solid phase hydrogenation catalysts for
unsaturated hydrocarbons such as propylene, CH3CHCH2. In order for the reaction to be
catalyzed the propylene molecules must first adsorb onto the surface. In order to completely
cover the surface of a piece of platinum that has an area of 1.50 cm² with propylene, a total
of 3.45 x 10¹7 molecules are needed. Determine the mass of the propylene molecules that
have been absorbed onto the platinum surface.
Chem 141, Dr. Haefner
2. (a) Many main group oxides form acidic solutions when added to water. For example solid
tetraphosphorous decaoxide reacts with water to produce phosphoric acid. Write a balanced
chemical equation for this reaction.
(b) Calcium phosphate reacts with silicon dioxide and carbon graphite at elevated temperatures
to produce white phosphorous (P4) as a gas along with calcium silicate (Silcate ion is SiO3²-)
and carbon monoxide. Write a balanced chemical equation for this reaction.