Consider the isothermal expansion of 2.35 mol of an ideal gas at 415 K from an initial pressure of 18.0 bar to a final pressure of 1.75 bar. Describe the process that will result in the greatest amount of work being done by the system with
Want to see the full answer?
Check out a sample textbook solutionChapter 2 Solutions
Thermodynamics, Statistical Thermodynamics, & Kinetics
- The Dieterici equation of state for one mole of gas is p=RTe-aVRTV-b Where a and b are constants determined experimentally. For NH3g, a = 10.91 atm. L2 and b = 0.0401 L. Plot the pressure of the gas as the volume of 1.00 mol of NH3g expands from 22.4 L to 50.0 L at 273 K, and numerically determine the work done by the gas by measuring the area under the curve.arrow_forwardCalculate the work for the isothermal, reversible compressionof 0.245 moleof an idealgas going from 1.000L to 1.00 mL if the temperature were 95.0C.arrow_forwardA 220-ft3 sample of gas at standard temperature and pressure is compressed into a cylinder, where it exerts pressure of 2000 psi. Calculate the work (in J) performed when this gas expands isothermally against an opposing pressure of 1.0 atm. (The amount of work that can be done is equivalent to the destructive force of about 1/4 lb of dynamite, giving you an idea of how potentially destructive compressed gas cylinders can be if improperly handled!)arrow_forward
- What is the finaltemperature of0.122 mole ofmonatomic ideal gas that performs 75J of work adiabatically if the initial temperature is 235C?arrow_forwardWhat are the two ways that a final chemical state of a system can be more probable than its initial state?arrow_forwardExplain inyour own words why work done by the system is defined as the negative of pV, not positive pV.arrow_forward
- Determine an expression for V/T p, n in terms of and . Does the sign on the expression make sense in terms of what you know happens to volume as temperature changes?arrow_forwardFor the reaction BaCO3(s) BaO(s) + CO2(g), rG = +219.7 kJ/mol-rxn. Using this value and other data available in Appendix L, calculate the value of fG for BaCO3(s).arrow_forwardApistonhaving0.033 mol ofgas at 35.0Cexpands from0.77 Lto 2.00L.Calculate the work performed if theexpansion occurs a against an externalpressure of 0.455atm,andbreversibly.arrow_forward
- A 1.00 mol sample of H2 is carefully warmed from 22 K to 40 K at constant volume. a What is the expected heat capacity of the hydrogen? b What is q for the process?arrow_forwardWhat are the numerical values of the heat capacities c-v and c-p of a monatomic ideal gas,in units of cal/mol.K and L.atm/mol.K?arrow_forwardBillions of pounds of acetic acid are made each year, much of it by the reaction of methanol with carbon monoxide. (AssumeT= 298 K.) CH3OH() + CO(g) CH3COOH() (a) By calculating the standard Gibbs free energy change, rG, for this reaction, show that it is product-favored. (b) Determine the standard Gibbs free energy change, rG,for the reaction of acetic acid with oxygen to form gaseous carbon dioxide and liquid water. (c) Based on this result, is acetic acid thermodynamicallystable compared with CO2(g) and H2O()? (d) Is acetic acid kinetically stable compared with CO2(g)and H2O()?arrow_forward
- Physical ChemistryChemistryISBN:9781133958437Author:Ball, David W. (david Warren), BAER, TomasPublisher:Wadsworth Cengage Learning,Principles of Modern ChemistryChemistryISBN:9781305079113Author:David W. Oxtoby, H. Pat Gillis, Laurie J. ButlerPublisher:Cengage LearningChemistryChemistryISBN:9781305957404Author:Steven S. Zumdahl, Susan A. Zumdahl, Donald J. DeCostePublisher:Cengage Learning
- Chemistry: An Atoms First ApproachChemistryISBN:9781305079243Author:Steven S. Zumdahl, Susan A. ZumdahlPublisher:Cengage LearningGeneral Chemistry - Standalone book (MindTap Cour...ChemistryISBN:9781305580343Author:Steven D. Gammon, Ebbing, Darrell Ebbing, Steven D., Darrell; Gammon, Darrell Ebbing; Steven D. Gammon, Darrell D.; Gammon, Ebbing; Steven D. Gammon; DarrellPublisher:Cengage Learning