Concept explainers
a.
To draw:
a.

Explanation of Solution
Given:
Following data is given in the form of a table
Graph:
By using the above data, scatter plot is drawn.
Interpretation:
The graph shows that average ticket price has been consistently on the rise.
b.
To find: a linear model using regression utility for the given data and identify the coefficient of determination.
b.

Explanation of Solution
Given:
Following data is given in the form of a table
Graph:
Interpretation:
The given graph shows an almost similar increase according to the linear model.
Here, there are 3 points which lying on the line, thus indicating certain accuracy.
The coefficient of determination is
c.
To find: a linear model with the scatter plot from part (a).
c.

Explanation of Solution
Given:
Following data is given in the form of a table
Graph:
Interpretation:
The given graph shows an almost similar increase according to the linear model.
Here, there are 3 points which lying on the line, thus indicating certain accuracy.
d.
To find: a quadratic model using regression utility for the given data and its coefficient of determination.
d.

Explanation of Solution
Given:
Following data is given in the form of a table
Graph:
Interpretation:
The given graph shows that the curve moves almost similar to the quadratic model. Also there are 4 point lying on the quadratic model thus indicating a comparatively higher accuracy as compared to linear model.
The coefficient of determination is
e.
To find: a quadratic model for the given data.
e.

Explanation of Solution
Given:
Following data is given in the form of a table
Graph:
Interpretation:
The given graph shows that the curve moves almost similar to the quadratic model. Also there are 4 point lying on the quadratic model thus indicating a comparatively higher accuracy as compared to linear model
f.
To find: a better model fit for the data.
f.

Explanation of Solution
Given:
Following data is given in the form of a table
On observation of linear model and the quadratic model, it can be easily said that the quadratic models is better as it closely follows the actual movement of the graph.
This is not true in the case of linear model where only 3 of the points lie on the line as compared to 4 in case of quadratic model.
Conclusion:
Quadratic model is better fit for the data given as the difference between two consecutive values is not constant.
g.
To find: the year when the average movie ticket price is $10.25 using quadratic model.
g.

Explanation of Solution
Given:
Following data is given in the form of a table
Graph:
Interpretation:
Observing the quadratic model, it can be said that the average movie ticket price will be $10.25 in year
Conclusion:
The given data follows a similar pattern to the quadratic model.
This helps in finding the time when the graph will have certain value in the future.
Chapter 2 Solutions
EP PRECALC.GRAPHING APPR.-WEBASSIGN-1YR
- 3. Consider the sequences of functions f₁: [-π, π] → R, sin(n²x) An(2) n f pointwise as (i) Find a function ƒ : [-T,π] → R such that fn n∞. Further, show that fn →f uniformly on [-π,π] as n → ∞. [20 Marks] (ii) Does the sequence of derivatives f(x) has a pointwise limit on [-7, 7]? Justify your answer. [10 Marks]arrow_forward1. (i) Give the definition of a metric on a set X. [5 Marks] (ii) Let X = {a, b, c} and let a function d : XxX → [0, ∞) be defined as d(a, a) = d(b,b) = d(c, c) 0, d(a, c) = d(c, a) 1, d(a, b) = d(b, a) = 4, d(b, c) = d(c,b) = 2. Decide whether d is a metric on X. Justify your answer. = (iii) Consider a metric space (R, d.), where = [10 Marks] 0 if x = y, d* (x, y) 5 if xy. In the metric space (R, d*), describe: (a) open ball B2(0) of radius 2 centred at 0; (b) closed ball B5(0) of radius 5 centred at 0; (c) sphere S10 (0) of radius 10 centred at 0. [5 Marks] [5 Marks] [5 Marks]arrow_forward(c) sphere S10 (0) of radius 10 centred at 0. [5 Marks] 2. Let C([a, b]) be the metric space of continuous functions on the interval [a, b] with the metric doo (f,g) = max f(x)g(x)|. xЄ[a,b] = 1x. Find: Let f(x) = 1 - x² and g(x): (i) do(f, g) in C'([0, 1]); (ii) do(f,g) in C([−1, 1]). [20 Marks] [20 Marks]arrow_forward
- Given lim x-4 f (x) = 1,limx-49 (x) = 10, and lim→-4 h (x) = -7 use the limit properties to find lim→-4 1 [2h (x) — h(x) + 7 f(x)] : - h(x)+7f(x) 3 O DNEarrow_forward17. Suppose we know that the graph below is the graph of a solution to dy/dt = f(t). (a) How much of the slope field can you sketch from this information? [Hint: Note that the differential equation depends only on t.] (b) What can you say about the solu- tion with y(0) = 2? (For example, can you sketch the graph of this so- lution?) y(0) = 1 y ANarrow_forward(b) Find the (instantaneous) rate of change of y at x = 5. In the previous part, we found the average rate of change for several intervals of decreasing size starting at x = 5. The instantaneous rate of change of fat x = 5 is the limit of the average rate of change over the interval [x, x + h] as h approaches 0. This is given by the derivative in the following limit. lim h→0 - f(x + h) − f(x) h The first step to find this limit is to compute f(x + h). Recall that this means replacing the input variable x with the expression x + h in the rule defining f. f(x + h) = (x + h)² - 5(x+ h) = 2xh+h2_ x² + 2xh + h² 5✔ - 5 )x - 5h Step 4 - The second step for finding the derivative of fat x is to find the difference f(x + h) − f(x). - f(x + h) f(x) = = (x² x² + 2xh + h² - ])- = 2x + h² - 5h ])x-5h) - (x² - 5x) = ]) (2x + h - 5) Macbook Proarrow_forward
- Evaluate the integral using integration by parts. Sx² cos (9x) dxarrow_forwardLet f be defined as follows. y = f(x) = x² - 5x (a) Find the average rate of change of y with respect to x in the following intervals. from x = 4 to x = 5 from x = 4 to x = 4.5 from x = 4 to x = 4.1 (b) Find the (instantaneous) rate of change of y at x = 4. Need Help? Read It Master Itarrow_forwardVelocity of a Ball Thrown into the Air The position function of an object moving along a straight line is given by s = f(t). The average velocity of the object over the time interval [a, b] is the average rate of change of f over [a, b]; its (instantaneous) velocity at t = a is the rate of change of f at a. A ball is thrown straight up with an initial velocity of 128 ft/sec, so that its height (in feet) after t sec is given by s = f(t) = 128t - 16t². (a) What is the average velocity of the ball over the following time intervals? [3,4] [3, 3.5] [3, 3.1] ft/sec ft/sec ft/sec (b) What is the instantaneous velocity at time t = 3? ft/sec (c) What is the instantaneous velocity at time t = 7? ft/sec Is the ball rising or falling at this time? O rising falling (d) When will the ball hit the ground? t = sec Need Help? Read It Watch Itarrow_forward
- Calculus: Early TranscendentalsCalculusISBN:9781285741550Author:James StewartPublisher:Cengage LearningThomas' Calculus (14th Edition)CalculusISBN:9780134438986Author:Joel R. Hass, Christopher E. Heil, Maurice D. WeirPublisher:PEARSONCalculus: Early Transcendentals (3rd Edition)CalculusISBN:9780134763644Author:William L. Briggs, Lyle Cochran, Bernard Gillett, Eric SchulzPublisher:PEARSON
- Calculus: Early TranscendentalsCalculusISBN:9781319050740Author:Jon Rogawski, Colin Adams, Robert FranzosaPublisher:W. H. FreemanCalculus: Early Transcendental FunctionsCalculusISBN:9781337552516Author:Ron Larson, Bruce H. EdwardsPublisher:Cengage Learning





