
Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Textbook Question
Chapter 19, Problem 33P
A proton accelerates from rest in a uniform electric field of 640 N/C. At one later moment, its speed is 1.20 Mm/s (non-relativistic because v is much less than the
Expert Solution & Answer

Want to see the full answer?
Check out a sample textbook solution
Students have asked these similar questions
A positive charge of 91 is located 5.11 m to the left of a negative charge 92. The
charges have different magnitudes. On the line through the charges, the net
electric field is zero at a spot 2.90 m to the right of the negative charge. On this
line there are also two spots where the potential is zero. (a) How far to the left of
the negative charge is one spot? (b) How far to the right of the negative charge is
the other?
A charge of -3.99 μC is fixed in place. From a horizontal distance of 0.0423 m, a
particle of mass 7.31 x 103 kg and charge -9.76 µC is fired with an initial speed
of 84.1 m/s directly toward the fixed charge. How far does the particle travel
before its speed is zero?
a)
What is the minimum tension in N that the cable must be able to support without breaking? Assume the cable is massless.
T =
b)
If the cable can only support a tension of 10,000 N what is the highest mass the ball can have in kg?
mm =
Chapter 19 Solutions
Principles of Physics: A Calculus-Based Text
Ch. 19.2 - Three objects are brought close to one another,...Ch. 19.3 - Three objects are brought close to one another,...Ch. 19.4 - Object A has a charge of +2 C, and object B has a...Ch. 19.5 - A test charge of +3 C is at a point P where an...Ch. 19.6 - Rank the magnitudes of the electric field at...Ch. 19.9 - If the net flux through a gaussian surface is...Ch. 19.9 - Consider the charge distribution shown in Active...Ch. 19 - A point charge of 4.00 nC is located at (0, 1.00)...Ch. 19 - Charges of 3.00 nC, 2.00 nC, 7.00 nC, and 1.00 nC...Ch. 19 - An object with negative charge is placed in a...
Ch. 19 - A particle with charge q is located inside a...Ch. 19 - Prob. 5OQCh. 19 - Prob. 6OQCh. 19 - Rank the electric fluxes through each gaussian...Ch. 19 - A circular ring of charge with radius b has total...Ch. 19 - Two solid spheres, both of radius 5 cm, carry...Ch. 19 - An electron with a speed of 3.00 106 m/s moves...Ch. 19 - A very small ball has a mass of 5.00 103 kg and a...Ch. 19 - In which of the following contexts can Gausss law...Ch. 19 - Two point charges attract each other with an...Ch. 19 - Three charged particles are arranged on corners of...Ch. 19 - Assume the charged objects in Figure OQ19.15 are...Ch. 19 - A uniform electric field exists in a region of...Ch. 19 - Prob. 2CQCh. 19 - If more electric field lines leave a gaussian...Ch. 19 - Prob. 4CQCh. 19 - Prob. 5CQCh. 19 - Prob. 6CQCh. 19 - Prob. 7CQCh. 19 - A cubical surface surrounds a point charge q....Ch. 19 - Prob. 9CQCh. 19 - Prob. 10CQCh. 19 - Prob. 11CQCh. 19 - Prob. 12CQCh. 19 - Prob. 13CQCh. 19 - Prob. 14CQCh. 19 - A common demonstration involves charging a rubber...Ch. 19 - Prob. 1PCh. 19 - (a) Calculate the number of electrons in a small,...Ch. 19 - Nobel laureate Richard Feynman (19181088) once...Ch. 19 - Prob. 4PCh. 19 - Prob. 5PCh. 19 - Prob. 6PCh. 19 - Two small beads having positive charges q1 = 3q...Ch. 19 - Prob. 8PCh. 19 - Three charged particles are located at the corners...Ch. 19 - Particle A of charge 3.00 104 C is at the origin,...Ch. 19 - Prob. 11PCh. 19 - Prob. 12PCh. 19 - Review. A molecule of DNA (deoxyribonucleic acid)...Ch. 19 - Prob. 14PCh. 19 - Prob. 15PCh. 19 - Prob. 16PCh. 19 - In Figure P19.17, determine the point (other than...Ch. 19 - Prob. 18PCh. 19 - Three point charges are arranged as shown in...Ch. 19 - Consider the electric dipole shown in Figure...Ch. 19 - A uniformly charged insulating rod of length 14.0...Ch. 19 - Prob. 22PCh. 19 - A rod 14.0 cm long is uniformly charged and has a...Ch. 19 - Prob. 24PCh. 19 - Prob. 25PCh. 19 - Prob. 26PCh. 19 - Prob. 27PCh. 19 - Three equal positive charges q are at the comers...Ch. 19 - Prob. 29PCh. 19 - Prob. 30PCh. 19 - Prob. 31PCh. 19 - Prob. 32PCh. 19 - A proton accelerates from rest in a uniform...Ch. 19 - Prob. 34PCh. 19 - Prob. 35PCh. 19 - Prob. 36PCh. 19 - Prob. 37PCh. 19 - A particle with charge Q is located a small...Ch. 19 - Prob. 39PCh. 19 - Prob. 40PCh. 19 - A particle with charge Q = 5.00 C is located at...Ch. 19 - Prob. 42PCh. 19 - Prob. 43PCh. 19 - Prob. 44PCh. 19 - Prob. 45PCh. 19 - A nonconducting wall carries charge with a uniform...Ch. 19 - In nuclear fission, a nucleus of uranium-238,...Ch. 19 - Consider a long, cylindrical charge distribution...Ch. 19 - A 10.0-g piece of Styrofoam carries a net charge...Ch. 19 - An insulating solid sphere of radius a has a...Ch. 19 - A large, flat, horizontal sheet of charge has a...Ch. 19 - A cylindrical shell of radius 7.00 cm and length...Ch. 19 - Consider a thin, spherical shell of radius 14.0 cm...Ch. 19 - Prob. 54PCh. 19 - Prob. 55PCh. 19 - Prob. 56PCh. 19 - A solid conducting sphere of radius 2.00 cm has a...Ch. 19 - A very large, thin, flat plate of aluminum of area...Ch. 19 - A thin, square, conducting plate 50.0 cm on a side...Ch. 19 - A long, straight wire is surrounded by a hollow...Ch. 19 - A square plate of copper with 50.0-cm sides has no...Ch. 19 - Prob. 62PCh. 19 - Prob. 63PCh. 19 - Prob. 64PCh. 19 - Prob. 65PCh. 19 - Why is the following situation impossible? An...Ch. 19 - A small, 2.00-g plastic ball is suspended by a...Ch. 19 - Two point charges qA = 12.0 C and qB = 45.0 C and...Ch. 19 - Prob. 69PCh. 19 - Prob. 70PCh. 19 - Prob. 71PCh. 19 - Two small spheres of mass m are suspended from...Ch. 19 - Two infinite, nonconducting sheets of charge are...Ch. 19 - Consider the charge distribution shown in Figure...Ch. 19 - A solid, insulating sphere of radius a has a...Ch. 19 - Prob. 76PCh. 19 - Prob. 77PCh. 19 - Prob. 78P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- Curve Fitter CURVE FITTER Open Update Fit Save New Exclusion Rules Select Validation Data Polynomial Exponential Logarithmic Auto Fourier Fit Fit Duplicate Data Manual FILE DATA FIT TYPE FIT Harmonic Motion X us 0.45 mi ce 0.4 0.35 0.3 0.25 0.2 Residuals Plot Contour Plot Plot Prediction Bounds None VISUALIZATION Colormap Export PREFERENCES EXPORT Fit Options COA Fourier Equation Fit Plot x vs. t -Harmonic Motion a0+ a1*cos(x*w) + b1*sin(x*w) Number of terms Center and scale 1 ▸ Advanced Options Read about fit options Results Value Lower Upper 0.15 a0 0.1586 0.1551 0.1620 a1 0.0163 0.0115 0.0211 0.1 b1 0.0011 -0.0093 0.0115 W 1.0473 0.9880 1.1066 2 8 10 t 12 14 16 18 20 Goodness of Fit Value Table of Fits SSE 0.2671 Fit State Fit name Data Harmonic Motion x vs. t Fit type fourier1 R-square 0.13345 SSE DFE 0.26712 296 Adj R-sq 0.12467 RMSE 0.030041 # Coeff Valic R-square 0.1335 4 DFE 296.0000 Adj R-sq 0.1247 RMSE 0.0300arrow_forwardWhat point on the spring or different masses should be the place to measure the displacement of the spring? For instance, should you measure to the bottom of the hanging masses?arrow_forwardLet's assume that the brightness of a field-emission electron gun is given by β = 4iB π² d²α² a) Assuming a gun brightness of 5x108 A/(cm²sr), if we want to have an electron beam with a semi-convergence angle of 5 milliradian and a probe current of 1 nA, What will be the effective source size? (5 points) b) For the same electron gun, plot the dependence of the probe current on the parameter (dpa) for α = 2, 5, and 10 milliradian, respectively. Hint: use nm as the unit for the electron probe size and display the three plots on the same graph. (10 points)arrow_forward
- i need step by step clear answers with the free body diagram clearlyarrow_forwardNo chatgpt pls will upvotearrow_forwardReview the data in Data Table 1 and examine the standard deviations and 95% Margin of Error calculations from Analysis Questions 3 and 4 for the Acceleration of the 1st Based on this information, explain whether Newton’s Second Law of Motion, Equation 1, was verified for your 1st Angle. Equation: SF=ma Please help with explaining the information I collected from a lab and how it relates to the equation and Newton's Second Law. This will help with additional tables in the lab. Thanks!arrow_forward
- No chatgpt pls will upvote instantarrow_forwardKirchoff's Laws. A circuit contains 3 known resistors, 2 known batteries, and 3 unknown currents as shown. Assume the current flows through the circuit as shown (this is our initial guess, the actual currents may be reverse). Use the sign convention that a potential drop is negative and a potential gain is positive. E₂ = 8V R₁₁ = 50 R₂ = 80 b с w 11 www 12 13 E₁ = 6V R3 = 20 a) Apply Kirchoff's Loop Rule around loop abefa in the clockwise direction starting at point a. (2 pt). b) Apply Kirchoff's Loop Rule around loop bcdeb in the clockwise direction starting at point b. (2 pt). c) Apply Kirchoff's Junction Rule at junction b (1 pt). d) Solve the above 3 equations for the unknown currents I1, 12, and 13 and specify the direction of the current around each loop. (5 pts) I1 = A 12 = A 13 = A Direction of current around loop abef Direction of current around loop bcde (CW or CCW) (CW or CCW)arrow_forwardNo chatgpt pls will upvotearrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax College
- Physics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningModern PhysicsPhysicsISBN:9781111794378Author:Raymond A. Serway, Clement J. Moses, Curt A. MoyerPublisher:Cengage Learning


Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

College Physics
Physics
ISBN:9781938168000
Author:Paul Peter Urone, Roger Hinrichs
Publisher:OpenStax College

Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning

Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning

Modern Physics
Physics
ISBN:9781111794378
Author:Raymond A. Serway, Clement J. Moses, Curt A. Moyer
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY