Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Question
Chapter 19, Problem 9CQ
(a)
To determine
Whether the person will be harmed upon touching the inside of the sphere when a large charge is placed on the sphere.
(b)
To determine
The consequence of a person with initial charge opposite to that of the charge on the sphere touches the inside of the sphere.
Expert Solution & Answer
Trending nowThis is a popular solution!
Students have asked these similar questions
Consider three identical metal spheres, A, B, and C. Sphere A carries a charge of +6q. Sphere B carries a charge of -q. Sphere C carries no net charge. Spheres A and B are touched together and then separated. Sphere C is then
touched to sphere A and separated from it. Lastly, sphere C is touched to sphere B and separated from it. (a) What is the ratio of the final charge on sphere C to q? What is the ratio of the final total charge on the three spheres
to g (b) before they are allowed to touch each other and (c) after they have touched?
(a) Number
|Units
(b) Number
Units
(c) Number
Units
Consider three identical metal spheres, A, B, and C. Sphere A carries a charge of +2q. Sphere B carries a charge of -q. Sphere C carries
no net charge. Spheres A and B are touched together and then separated. Sphere C is then touched to sphere A and separated from it.
Lastly, sphere C is touched to sphere B and separated from it. (a) What is the ratio of the final charge on sphere C to q? What is the ratio
of the final total charge on the three spheres to q (b) before they are allowed to touch each other and (c) after they have touched?
(a) Number
i
(b) Number i
(c) Number i
Units
Units
Units
Consider three identical metal spheres, A, B, and C. Sphere A carries a charge of +8q. Sphere B carries a charge of -q. Sphere C carries no net charge. Spheres A and B are touched together and then separated. Sphere C is then touched to sphere A and separated from it. Lastly, sphere C is touched to sphere B and separated from it. (a) What is the ratio of the final charge on sphere C to q? What is the ratio of the final total charge on the three spheres to q (b) before they are allowed to touch each other and (c) after they have touched?
(a)
(b)
(c)
Chapter 19 Solutions
Principles of Physics: A Calculus-Based Text
Ch. 19.2 - Three objects are brought close to one another,...Ch. 19.3 - Three objects are brought close to one another,...Ch. 19.4 - Object A has a charge of +2 C, and object B has a...Ch. 19.5 - A test charge of +3 C is at a point P where an...Ch. 19.6 - Rank the magnitudes of the electric field at...Ch. 19.9 - If the net flux through a gaussian surface is...Ch. 19.9 - Consider the charge distribution shown in Active...Ch. 19 - A point charge of 4.00 nC is located at (0, 1.00)...Ch. 19 - Charges of 3.00 nC, 2.00 nC, 7.00 nC, and 1.00 nC...Ch. 19 - An object with negative charge is placed in a...
Ch. 19 - A particle with charge q is located inside a...Ch. 19 - Prob. 5OQCh. 19 - Prob. 6OQCh. 19 - Rank the electric fluxes through each gaussian...Ch. 19 - A circular ring of charge with radius b has total...Ch. 19 - Two solid spheres, both of radius 5 cm, carry...Ch. 19 - An electron with a speed of 3.00 106 m/s moves...Ch. 19 - A very small ball has a mass of 5.00 103 kg and a...Ch. 19 - In which of the following contexts can Gausss law...Ch. 19 - Two point charges attract each other with an...Ch. 19 - Three charged particles are arranged on corners of...Ch. 19 - Assume the charged objects in Figure OQ19.15 are...Ch. 19 - A uniform electric field exists in a region of...Ch. 19 - Prob. 2CQCh. 19 - If more electric field lines leave a gaussian...Ch. 19 - Prob. 4CQCh. 19 - Prob. 5CQCh. 19 - Prob. 6CQCh. 19 - Prob. 7CQCh. 19 - A cubical surface surrounds a point charge q....Ch. 19 - Prob. 9CQCh. 19 - Prob. 10CQCh. 19 - Prob. 11CQCh. 19 - Prob. 12CQCh. 19 - Prob. 13CQCh. 19 - Prob. 14CQCh. 19 - A common demonstration involves charging a rubber...Ch. 19 - Prob. 1PCh. 19 - (a) Calculate the number of electrons in a small,...Ch. 19 - Nobel laureate Richard Feynman (19181088) once...Ch. 19 - Prob. 4PCh. 19 - Prob. 5PCh. 19 - Prob. 6PCh. 19 - Two small beads having positive charges q1 = 3q...Ch. 19 - Prob. 8PCh. 19 - Three charged particles are located at the corners...Ch. 19 - Particle A of charge 3.00 104 C is at the origin,...Ch. 19 - Prob. 11PCh. 19 - Prob. 12PCh. 19 - Review. A molecule of DNA (deoxyribonucleic acid)...Ch. 19 - Prob. 14PCh. 19 - Prob. 15PCh. 19 - Prob. 16PCh. 19 - In Figure P19.17, determine the point (other than...Ch. 19 - Prob. 18PCh. 19 - Three point charges are arranged as shown in...Ch. 19 - Consider the electric dipole shown in Figure...Ch. 19 - A uniformly charged insulating rod of length 14.0...Ch. 19 - Prob. 22PCh. 19 - A rod 14.0 cm long is uniformly charged and has a...Ch. 19 - Prob. 24PCh. 19 - Prob. 25PCh. 19 - Prob. 26PCh. 19 - Prob. 27PCh. 19 - Three equal positive charges q are at the comers...Ch. 19 - Prob. 29PCh. 19 - Prob. 30PCh. 19 - Prob. 31PCh. 19 - Prob. 32PCh. 19 - A proton accelerates from rest in a uniform...Ch. 19 - Prob. 34PCh. 19 - Prob. 35PCh. 19 - Prob. 36PCh. 19 - Prob. 37PCh. 19 - A particle with charge Q is located a small...Ch. 19 - Prob. 39PCh. 19 - Prob. 40PCh. 19 - A particle with charge Q = 5.00 C is located at...Ch. 19 - Prob. 42PCh. 19 - Prob. 43PCh. 19 - Prob. 44PCh. 19 - Prob. 45PCh. 19 - A nonconducting wall carries charge with a uniform...Ch. 19 - In nuclear fission, a nucleus of uranium-238,...Ch. 19 - Consider a long, cylindrical charge distribution...Ch. 19 - A 10.0-g piece of Styrofoam carries a net charge...Ch. 19 - An insulating solid sphere of radius a has a...Ch. 19 - A large, flat, horizontal sheet of charge has a...Ch. 19 - A cylindrical shell of radius 7.00 cm and length...Ch. 19 - Consider a thin, spherical shell of radius 14.0 cm...Ch. 19 - Prob. 54PCh. 19 - Prob. 55PCh. 19 - Prob. 56PCh. 19 - A solid conducting sphere of radius 2.00 cm has a...Ch. 19 - A very large, thin, flat plate of aluminum of area...Ch. 19 - A thin, square, conducting plate 50.0 cm on a side...Ch. 19 - A long, straight wire is surrounded by a hollow...Ch. 19 - A square plate of copper with 50.0-cm sides has no...Ch. 19 - Prob. 62PCh. 19 - Prob. 63PCh. 19 - Prob. 64PCh. 19 - Prob. 65PCh. 19 - Why is the following situation impossible? An...Ch. 19 - A small, 2.00-g plastic ball is suspended by a...Ch. 19 - Two point charges qA = 12.0 C and qB = 45.0 C and...Ch. 19 - Prob. 69PCh. 19 - Prob. 70PCh. 19 - Prob. 71PCh. 19 - Two small spheres of mass m are suspended from...Ch. 19 - Two infinite, nonconducting sheets of charge are...Ch. 19 - Consider the charge distribution shown in Figure...Ch. 19 - A solid, insulating sphere of radius a has a...Ch. 19 - Prob. 76PCh. 19 - Prob. 77PCh. 19 - Prob. 78P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- A thin, square, conducting plate 50.0 cm on a side lies in the xy plane. A total charge of 4.00 108 C is placed on the plate. Find (a) the charge density on each face of the plate, (b) the electric field just above the plate, and (c) the electric field just below the plate. You may assume the charge density is uniform.arrow_forwardIs it possible for a conducting sphere of radius 0.10 m to hold a charge of 4.0 C in air? The minimum field required to break down air and turn it into a conductor is 3.0 106 N/C.arrow_forwardA charge of q = 2.00 109 G is spread evenly on a thin metal disk of radius 0.200 m. (a) Calculate the charge density on the disk. (b) Find the magnitude of the electric field just above the center of the disk, neglecting edge effects and assuming a uniform distribution of charge.arrow_forward
- A solid, insulating sphere of radius a has a uniform charge density throughout its volume and a total charge Q. Concentric with this sphere is an uncharged, conducting, hollow sphere whose inner and outer radii are b and c as shown in Figure P19.75. We wish to understand completely the charges and electric fields at all locations. (a) Find the charge contained within a sphere of radius r a. (b) From this value, find the magnitude of the electric field for r a. (c) What charge is contained within a sphere of radius r when a r b? (d) From this value, find the magnitude of the electric field for r when a r b. (e) Now consider r when b r c. What is the magnitude of the electric field for this range of values of r? (f) From this value, what must be the charge on the inner surface of the hollow sphere? (g) From part (f), what must be the charge on the outer surface of the hollow sphere? (h) Consider the three spherical surfaces of radii a, b, and c. Which of these surfaces has the largest magnitude of surface charge density?arrow_forwardInitially a glass rod and a piece of silk are neutral. After you rub the silk against the rod, the glass rod has a surplus of 3.33 1011 protons. What is the charge q of the silk?arrow_forwardConsider the charge distribution shown in Figure P19.74. (a) Show that the magnitude of the electric field at the center of any face of the cube has a value of 2.18 keq/s2. (b) What is the direction of the electric field at the center of the top face of the cube?arrow_forward
- A charged rod is placed in the center along the axis of a neutral metal cylinder (Fig. F25.57). The rod has a total charge of 38.3 C uniformly distributed. What are the charges on the inner and outer surfaces of the metal cylinder? (Ignore the ends.) FIGURE P25.57 Problems 57 and 58.arrow_forwardTwo solid spheres, both of radius 5 cm, carry identical total charges of 2 C. Sphere A is a good conductor. Sphere B is an insulator, and its charge is distributed uniformly throughout its volume. (i) How do the magnitudes of the electric fields they separately create at a radial distance of 6 cm compare? (a) EA EB = 0 (b) EA EB 0 (c) EA = EB 0 (d) 0 EA EB (e) 0 = EA EB (ii) How do the magnitudes of the electric fields they separately create at radius 4 cm compare? Choose from the same possibilities as in part (i).arrow_forwardA sphere has a net charge of 8.05 nC, and a negatively charged rod has a charge of 6.03 nC. The sphere and rod undergo a process such that 5.00 109 electrons are transferred from the rod to the sphere. What are the charges of the sphere and the rod after this process?arrow_forward
- The fundamental charge is e = 1.60 1019 C. Identify whether each of the following statements is true or false. (a) Its possible to transfer electric charge to an object so that its net electric charge is 7.5 times the fundamental electric charge, e. (b) All protons have a charge of +e. (c) Electrons in a conductor have a charge of e while electrons in an insulator have no charge.arrow_forwardAssume the charged objects in Figure OQ23.10 are fixed. Notice that there is no sight line from the location of q2 to the location of q1. If you were at q1, you would be unable to see q2 because it is behind q3. How would you calculate the electric force exerted on the object with charge q1? (a) Find only the force exerted by q2 on charge q1. (b) Find only the force exerted by q3 an charge q1. (c) Add the force that q2 would exert by itself on charge q1 to the force that q3 would exert by itself on charge q1. (d) Add the force that q3 would exert by itself to a certain fraction of the force that q2 would exert by itself. (e) There is no definite way to find the force on charge q1.arrow_forwardTwo particles with charges q1 and q2 are separated by a distance d, and each exerts an electric force on the other with magnitude FE. a. In terms of these quantities, what separation distance would cause the magnitude of the electric force to be halved? b. In terms of these quantities, what separation distance would cause the magnitude of the electric force to be doubled?arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Physics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPrinciples of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
Physics for Scientists and Engineers, Technology ...
Physics
ISBN:9781305116399
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Physics for Scientists and Engineers: Foundations...
Physics
ISBN:9781133939146
Author:Katz, Debora M.
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781285737027
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
College Physics
Physics
ISBN:9781305952300
Author:Raymond A. Serway, Chris Vuille
Publisher:Cengage Learning
8.02x - Lect 1 - Electric Charges and Forces - Coulomb's Law - Polarization; Author: Lectures by Walter Lewin. They will make you ♥ Physics.;https://www.youtube.com/watch?v=x1-SibwIPM4;License: Standard YouTube License, CC-BY