Principles of Physics: A Calculus-Based Text
5th Edition
ISBN: 9781133104261
Author: Raymond A. Serway, John W. Jewett
Publisher: Cengage Learning
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 19, Problem 6P
To determine
Whether the situation is possible.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
Why is the following situation impossible? Two identical dust particles of mass 1μg are floating in empty space, far from any external sources of large gravitational or electric fields, and at rest with respect to each other. Both particles carry electric charges that are identical in magnitude and sign. The gravitational and electric forces between the particles happen to have the same magnitude, so each particle experiences zero net force and the distance between the particles remains constant.
Why is the following situation impossible? Two identical dust particles of mass 1.00 μg are floating in empty space, far from any external sources of large gravitational or electric fields, and at rest with respect to each other. Both particles carry electric charges that are identical in magnitude and sign. The gravitational and electric forces between the particles happen to have the same magnitude, so each particle experiences zero net force and the distance between the particles remains constant.
Newer automobiles have filters that remove fine particles from exhaust gases. This is done by charging the particles and separating them with a strong electric field. Consider a positively charged particle +4.7 µC that enters an electric field with strength 6 ✕ 106 N/C. The particle is traveling at 21 m/s and has a mass of 10−9 g.
a) What is the acceleration of the particle? (Enter the magnitude only.)
b) What is the direction of the acceleration of the particle relative to the electric field?
Chapter 19 Solutions
Principles of Physics: A Calculus-Based Text
Ch. 19.2 - Three objects are brought close to one another,...Ch. 19.3 - Three objects are brought close to one another,...Ch. 19.4 - Object A has a charge of +2 C, and object B has a...Ch. 19.5 - A test charge of +3 C is at a point P where an...Ch. 19.6 - Rank the magnitudes of the electric field at...Ch. 19.9 - If the net flux through a gaussian surface is...Ch. 19.9 - Consider the charge distribution shown in Active...Ch. 19 - A point charge of 4.00 nC is located at (0, 1.00)...Ch. 19 - Charges of 3.00 nC, 2.00 nC, 7.00 nC, and 1.00 nC...Ch. 19 - An object with negative charge is placed in a...
Ch. 19 - A particle with charge q is located inside a...Ch. 19 - Prob. 5OQCh. 19 - Prob. 6OQCh. 19 - Rank the electric fluxes through each gaussian...Ch. 19 - A circular ring of charge with radius b has total...Ch. 19 - Two solid spheres, both of radius 5 cm, carry...Ch. 19 - An electron with a speed of 3.00 106 m/s moves...Ch. 19 - A very small ball has a mass of 5.00 103 kg and a...Ch. 19 - In which of the following contexts can Gausss law...Ch. 19 - Two point charges attract each other with an...Ch. 19 - Three charged particles are arranged on corners of...Ch. 19 - Assume the charged objects in Figure OQ19.15 are...Ch. 19 - A uniform electric field exists in a region of...Ch. 19 - Prob. 2CQCh. 19 - If more electric field lines leave a gaussian...Ch. 19 - Prob. 4CQCh. 19 - Prob. 5CQCh. 19 - Prob. 6CQCh. 19 - Prob. 7CQCh. 19 - A cubical surface surrounds a point charge q....Ch. 19 - Prob. 9CQCh. 19 - Prob. 10CQCh. 19 - Prob. 11CQCh. 19 - Prob. 12CQCh. 19 - Prob. 13CQCh. 19 - Prob. 14CQCh. 19 - A common demonstration involves charging a rubber...Ch. 19 - Prob. 1PCh. 19 - (a) Calculate the number of electrons in a small,...Ch. 19 - Nobel laureate Richard Feynman (19181088) once...Ch. 19 - Prob. 4PCh. 19 - Prob. 5PCh. 19 - Prob. 6PCh. 19 - Two small beads having positive charges q1 = 3q...Ch. 19 - Prob. 8PCh. 19 - Three charged particles are located at the corners...Ch. 19 - Particle A of charge 3.00 104 C is at the origin,...Ch. 19 - Prob. 11PCh. 19 - Prob. 12PCh. 19 - Review. A molecule of DNA (deoxyribonucleic acid)...Ch. 19 - Prob. 14PCh. 19 - Prob. 15PCh. 19 - Prob. 16PCh. 19 - In Figure P19.17, determine the point (other than...Ch. 19 - Prob. 18PCh. 19 - Three point charges are arranged as shown in...Ch. 19 - Consider the electric dipole shown in Figure...Ch. 19 - A uniformly charged insulating rod of length 14.0...Ch. 19 - Prob. 22PCh. 19 - A rod 14.0 cm long is uniformly charged and has a...Ch. 19 - Prob. 24PCh. 19 - Prob. 25PCh. 19 - Prob. 26PCh. 19 - Prob. 27PCh. 19 - Three equal positive charges q are at the comers...Ch. 19 - Prob. 29PCh. 19 - Prob. 30PCh. 19 - Prob. 31PCh. 19 - Prob. 32PCh. 19 - A proton accelerates from rest in a uniform...Ch. 19 - Prob. 34PCh. 19 - Prob. 35PCh. 19 - Prob. 36PCh. 19 - Prob. 37PCh. 19 - A particle with charge Q is located a small...Ch. 19 - Prob. 39PCh. 19 - Prob. 40PCh. 19 - A particle with charge Q = 5.00 C is located at...Ch. 19 - Prob. 42PCh. 19 - Prob. 43PCh. 19 - Prob. 44PCh. 19 - Prob. 45PCh. 19 - A nonconducting wall carries charge with a uniform...Ch. 19 - In nuclear fission, a nucleus of uranium-238,...Ch. 19 - Consider a long, cylindrical charge distribution...Ch. 19 - A 10.0-g piece of Styrofoam carries a net charge...Ch. 19 - An insulating solid sphere of radius a has a...Ch. 19 - A large, flat, horizontal sheet of charge has a...Ch. 19 - A cylindrical shell of radius 7.00 cm and length...Ch. 19 - Consider a thin, spherical shell of radius 14.0 cm...Ch. 19 - Prob. 54PCh. 19 - Prob. 55PCh. 19 - Prob. 56PCh. 19 - A solid conducting sphere of radius 2.00 cm has a...Ch. 19 - A very large, thin, flat plate of aluminum of area...Ch. 19 - A thin, square, conducting plate 50.0 cm on a side...Ch. 19 - A long, straight wire is surrounded by a hollow...Ch. 19 - A square plate of copper with 50.0-cm sides has no...Ch. 19 - Prob. 62PCh. 19 - Prob. 63PCh. 19 - Prob. 64PCh. 19 - Prob. 65PCh. 19 - Why is the following situation impossible? An...Ch. 19 - A small, 2.00-g plastic ball is suspended by a...Ch. 19 - Two point charges qA = 12.0 C and qB = 45.0 C and...Ch. 19 - Prob. 69PCh. 19 - Prob. 70PCh. 19 - Prob. 71PCh. 19 - Two small spheres of mass m are suspended from...Ch. 19 - Two infinite, nonconducting sheets of charge are...Ch. 19 - Consider the charge distribution shown in Figure...Ch. 19 - A solid, insulating sphere of radius a has a...Ch. 19 - Prob. 76PCh. 19 - Prob. 77PCh. 19 - Prob. 78P
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, physics and related others by exploring similar questions and additional content below.Similar questions
- To study the properties of various particles, you can accelerate the particles with electric fields. A positron is a particle with the same mass as an electron but the opposite charge (+e). If a positron is accelerated by a constant electric field of magnitude 301 N/C, find the following. (a) Find the acceleration of the positron. (b) Find the positron's speed after 9.40 10-9 s. Assume that the positron started from rest.arrow_forwardA proton initially moves left to right long the x axis at a speed of 9,070 m/s. It moves into an electric field, which points in the negative x direction, and travels a distance of 0.7 m before coming to rest. If the proton's mass and charge are 1.67 × 10−27 kg and 1.60 × 10−19 C respectively, what is the magnitude of the electric field?arrow_forwardIf the gravitational force of two identical particles is equal to the electrostatic force between the proton (p) and the electron (e), what is the mass m of the particles? The magnitude of the charge of the electron and proton is e = 4.8x10-10 esu (CGS), G-6.7x10 CGS, the distance between the [p, e] pair is equal to the distance between the [m, m] pair.arrow_forward
- One model of the structure of the hydrogen atom consists of a stationary proton with an electron moving in a circular path around it, of radius 5.3 × 10-¹¹ m. The masses of a proton and an electron are 1.67 × 10-27 kg and 9.1 × 10-³¹ kg, respectively. (a) What is the electrostatic force between the electron and the proton? (b) What is the gravitational force between them? (c) Which force is mainly responsible for the electron's centripetal motion? (d) Calculate the velocity and period of the electron's orbit around the proton.arrow_forwardSpheres A and B have the same initial positive charge qo. The magnitude of the repulsive electric force between the two spheres is 14.4 N when separated by a distance of 0.03 m. (a) Find the initial charge qo. (b) The spheres are then allowed to touch each other and then separated. Find the electric force between them if the radius of sphere A is three times that of sphere B. A proton and an electron are initially at rest at a distance of 9x10-10m. What will be their initial acceleration due to the electric force that they exert on each other? A small sphere of charge +6x10-6C is suspended by a string of negligible mass. A charge of -9.0x10-6 C is placed directly to the right of the sphere and 0.22 m away from it. The string is deflected 5° from the vertical. Find the tension in the string. Four-point charges (two with q = 2.5 X10-6 C and two with q = -2.50x10-6 C) are situated at the corners of a square of side 1.00 m as shown. Find the resultant force that the…arrow_forwardNewer automobiles have filters that remove fine particles from exhaust gases. This is done by charging the particles and separating them with a strong electric field. Consider a positively charged particle +3.1 µC that enters an electric field with strength 6 ✕ 106 N/C. The particle is traveling at 21 m/s and has a mass of 10−9 g. What is the acceleration of the particle? (Enter the magnitude only.)arrow_forward
- If the gravitational force of two identical particles is equal to the elec- trostatic force between proton (p) and electron (e), what is the mass m, of the particles. The magnitude of charge of electron and proton is e=4.8x1010 esu (CGS), G=6.7×10 CGS, the distance between the [p, e] pair is equal to the distance between the [m, m] pair.arrow_forwardWhy is the following situation impossible? Two identical dust particles of mass 1 μg arefloating in empty space, far from any external sources of large gravitational or electricfields, and at rest with respect to each other. Both particles carry electric charges that areidentical in magnitude and sign. The gravitational and electric forces between the particleshappen to have the same magnitude, so each particle experiences zero net force and thedistance between the particles remains constant.arrow_forwardElectric force in the Hydrogen atom. In a hydrogen atom the separation between the proton and the electron is 5.3×10−11m, Compute the magnitude of the attractive force of attraction on the electron by the protonarrow_forward
- A positively charged ball falls vertically along the lines of a uniform electric field. The weight of the ball is larger than the electric force. The air drag force, exerted on the ball, is directly proportional to its speed. The mass and charge of the ball are equal to 0.46 kg and 0.22 C. The magnitude of the electic field is 5 V/m. Determine the ratio v1/v2, where v1 and v2 are the speeds of steady (i.e., constant speed) motion when the electric field vector is oriented downwards and upwards, respectively.arrow_forwardAt some instant the velocity components of an electron moving between two charged parallel plates are vx = 1.5 * 10^5 m/s and vy =3.0 * 10^3 m/s. Suppose the electric field between the plates is uniform and given by E: = (120 N/C)jˆ . In unit-vector notation, what are (a) the electron’s acceleration in that field and (b) the electron’s velocity when its x coordinate has changed by 2.0 cm?arrow_forwardSpheres A and B have the same initial positive charge q. The magnitude of the repulsive electric force between the two spheres is 14.4 N when separated by a distance of 0.03 m . Find the initial charge q. The spheres are then allowed to touch each other then separated. Find the electric force between them if if the radius of sphere A is three times that of sphere B.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
Principles of Physics: A Calculus-Based Text
Physics
ISBN:9781133104261
Author:Raymond A. Serway, John W. Jewett
Publisher:Cengage Learning
Electric Fields: Crash Course Physics #26; Author: CrashCourse;https://www.youtube.com/watch?v=mdulzEfQXDE;License: Standard YouTube License, CC-BY