
Concept explainers
(a)
The analysis model that describes the horizontal motion of the protons above the plane.
(a)

Answer to Problem 32P
The particle under constant velocity describes the horizontal motion of the protons above the plane.
Explanation of Solution
Figure 1 represents a proton is projected with an angle of
Write the expression for horizontal component of motion of the proton.
Here,
There is no force acting on the proton in the horizontal direction, thus the particle under constant velocity describes the horizontal motion of the protons above the plane.
Conclusion:
Therefore, the particle under constant velocity describes the horizontal motion of the protons above the plane
(b)
The analysis model that describes the vertical motion of the protons above the plane.
(b)

Answer to Problem 32P
The particle under constant acceleration describes the vertical motion of the protons above the plane.
Explanation of Solution
Write the expression for vertical component of motion of the proton.
Here,
From the above equation it is clear that the vertical component of the velocity depends only on acceleration due to gravity. The acceleration due to gravity has a constant value throughout the motion, thus the particle under constant acceleration describes the vertical motion of the protons above the plane.
Conclusion:
Therefore, the particle under constant acceleration describes the vertical motion of the protons above the plane.
(c)
Whether the Equation 3.16 be applicable to the protons.
(c)

Answer to Problem 32P
Yes, the Equation 3.16 is applicable to the protons. The proton moves in a parabolic path.
Explanation of Solution
Given that the electric field is
The vertical acceleration caused by the constant electric force
This vertical acceleration makes the proton to move in a parabolic path, this is similar to a projectile in a gravitational field.
Conclusion:
Therefore, the Equation 3.16 is applicable to the protons. The proton moves in a parabolic path.
(d)
The expression for range
(d)

Answer to Problem 32P
The expression for range
Explanation of Solution
Write the expression for vertical acceleration.
Here,
Write the expression for range from Equation 3.16.
Here,
Since the vertical acceleration is greater than acceleration due to gravity, consider vertical acceleration in the place of acceleration due to gravity.
Apply the above condition in equation (II)
Conclusion:
Substitute
Therefore, the expression for range
(e)
The two possible values of the angle
(e)

Answer to Problem 32P
The two possible values of the angle
Explanation of Solution
From subpart (d) the expression for range
Given that the range is
Conclusion:
Substitute
The other value of
Therefore, the two possible values of the angle
(f)
The time interval during which the proton is above the plane for the two possible values of
(f)

Answer to Problem 32P
The time interval during which the proton is above the plane for the two possible values of
Explanation of Solution
Write the expression for time interval.
Here,
Conclusion:
Substitute
Substitute
Therefore, the time interval during which the proton is above the plane for the two possible values of
Want to see more full solutions like this?
Chapter 19 Solutions
Principles of Physics: A Calculus-Based Text
- Please solve this problem correctly please and be sure to provide explanation on each step so I can understand what's been done thank you. (preferrably type out everything)arrow_forwardUse a calculation to determine how far the fishing boat is from the water level .Determine distance Yarrow_forwardNo chatgpt pls will upvote Already got wrong chatgpt answerarrow_forward
- 2. 1. Tube Rating Charts Name: Directions: For the given information state if the technique is safe or unsafe and why. 60 Hertz Stator Operation Effective Focal Spot Size- 0.6 mm Peak Kilovolts MA 2 150 140 130 120 110 100 90 80 70 2501 60 50 40 30 .01 .02 .04.06 .1 .2 .4.6 1 8 10 Maximum Exposure Time In Seconds Is an exposure of 80 kVp, 0.1 second and 200 mA within the limits of the single phase, 0.6 mm focal spot tube rating chart above? Is an exposure of 100 kVp, 0.9 second and 150 mA within the limits of the single phase, 0.6 mm focal spot tube rating chart above?arrow_forwardQ: You have a CO2 laser resonator (λ = 10.6 μm). It has two curved mirrors with R₁=10m, R2= 8m, and mirror separation /= 5m. Find: R2-10 m tl Z-O 12 R1-8 m 1. Confocal parameter. b= 21w2/2 =√1 (R1-1)(R2-1)(R1+R2-21)/R1+R2-21) 2. Beam waist at t₁ & t2- 3. Waist radius (wo). 4. 5. The radius of the laser beam outside the resonator and about 0.5m from R₂- Divergence angle. 6. Radius of curvature for phase front on the mirrors R₁ & R2-arrow_forwardNo chatgpt pls will upvotearrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781938168000Author:Paul Peter Urone, Roger HinrichsPublisher:OpenStax CollegePhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning





