Concept explainers
(a)
The magnitude of total electric force exerted on the charge at the lower left corner due to the other three charges.
(a)
Answer to Problem 65P
The magnitude of total electric force exerted on the charge at the lower left corner due to the other three charges is
Explanation of Solution
Figure 1 represents four charges of equal magnitude of
Write the expression for angle
Here,
Write the expression for magnitude of electric force due to charge 1.
Here,
Write the expression for magnitude of electric force due to charge 2.
Here,
Write the expression for magnitude of electric force due to charge 1.
Here,
Write the expression for horizontal component of the resultant force.
Write the expression for vertical component of the resultant force.
Write the expression for the resultant force.
Conclusion:
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Substitute
Therefore, the magnitude of total electric force exerted on the charge at the lower left corner due to the other three charges is
(b)
The direction of total electric force exerted on the charge at the lower left corner due to the other three charges.
(b)
Answer to Problem 65P
The direction of total electric force exerted on the charge at the lower left corner due to the other three charges is
Explanation of Solution
Write the expression for angle between the vertical component and the horizontal component of the resultant electric force from Figure 1.
Here,
Conclusion:
Substitute
Therefore, the direction of total electric force exerted on the charge at the lower left corner due to the other three charges is
Want to see more full solutions like this?
Chapter 19 Solutions
Principles of Physics: A Calculus-Based Text
- In Figure P24.49, a charged particle of mass m = 4.00 g and charge q = 0.250 C is suspended in static equilibrium at the end of an insulating thread that hangs from a very long, charged, thin rod. The thread is 12.0 cm long and makes an angle of 35.0 with the vertical. Determine the linear charge density of the rod. FIGURE P24.49arrow_forwardEight small conducting spheres with identical charge q = 2.00 C are placed at the corners of a cube of side d = 0.500 m (Fig. P23.75). What is the total force on the sphere at the origin (sphere A) due to the other seven spheres? Figure P23.75arrow_forwardWhy is the following situation impossible? A solid copper sphere of radius 15.0 cm is in electrostatic equilibrium and carries a charge of 40.0 nC. Figure P24.30 shows the magnitude of the electric field as a function of radial position r measured from the center of the sphere. Figure P24.30arrow_forward
- A conducting rod carrying a total charge of +9.00 C is bent into a semicircle of radius R = 33.0 cm, with its center of curvature at the origin (Fig.P24.75). The charge density along the rod is given by = 0 sin , where is measured clockwise from the +x axis. What is the magnitude of the electric force on a 1.00-C charged particle placed at the origin?arrow_forwardA Two positively charged particles, each with charge Q, are held at positions (a, 0) and (a, 0) as shown in Figure P23.73. A third positively charged particle with charge q is placed at (0, h). a. Find an expression for the net electric force on the third particle with charge q. b. Show that the two charges Q behave like a single charge 2Q located at the origin when the distance h is much greater than a. Figure P23.73 Problems 73 and 74.arrow_forwardCharges A, B, and C are arranged in the xy plane with qA = 5.60 C, qB = 4.00 C, and qC = 2.30 /C (Fig. P23.43). What are the magnitude and direction of the electrostatic force on charge B? Figure P23.43arrow_forward
- A uniform electric field given by E=(2.655.35j)105N/C permeates a region of space in which a small negatively charged sphere of mass 1.30 g is suspended by a light cord (Fig. P24.53). The sphere is found to be in equilibrium when the string makes an angle = 23.0. a. What is the charge on the sphere? b. What is the magnitude of the tension in the cord? FIGURE P24.53arrow_forwardFour equally charged particles with charge q are placed at the comers of a square with side length L, as shown in Figure P23.51. A fifth charged particle with charge Q is placed at the center of the square so that the entire system of charges is in static equilibrium. What are the magnitude and sign of the charge Q? Figure P23.51arrow_forwardFind an expression for the magnitude of the electric field at point A mid-way between the two rings of radius R shown in Figure P24.30. The ring on the left has a uniform charge q1 and the ring on the right has a uniform charge q2. The rings are separated by distance d. Assume the positive x axis points to the right, through the center of the rings. FIGURE P24.30 Problems 30 and 31.arrow_forward
- If the magnitude of the surface charge density of the plates in Figure P25.55 is = 99.5 nC/m2, what is the magnitude of the electric field between the plates? If an electron is placed between the plates, what is the magnitude of the electric force on it? FIGURE P25.55arrow_forwardThree identical charges (q = 5.0 C.) lie along a circle of radius 2.0 m at angles of 30, 150, and 270, as shown in Figure P15.33 (page 524). What is the resultant electric field at the center of the circle? Figure P15.33arrow_forwardGiven the arrangement of charged particles shown in Figure P23.37, find the net electrostatic force on the 5.00-nC charged particle located at the origin. Figure P23.37arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning
- College PhysicsPhysicsISBN:9781285737027Author:Raymond A. Serway, Chris VuillePublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage LearningPhysics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage Learning