Concept explainers
Three point charges are arranged as shown in Figure P19.19. (a) Find the vector electric Field that the 6.00-nC and –3.00-nC charges together create at the origin. (b) Find the vector force on the 5.00-nC charge.
(a)
The electric field at the origin due to charges
Answer to Problem 19P
The electric field at the origin due to charges
Explanation of Solution
Figure 1 represents the electric field at the origin due to charges
Write the expression for the electric field at the origin due to
Here,
Write the expression for the electric field at the origin due to
Here,
Write the expression for net electric field at the origin.
Conclusion:
Substitute
Substitute
Use equation (IV) and (V) in equation (III).
Therefore, the electric field at the origin due to charges
(b)
The vector force on the charge
Answer to Problem 19P
The vector force on the charge
Explanation of Solution
From subpart (a) the electric field at the origin due to charges
Write the expression for vector force on the charge.
Here,
Conclusion:
Substitute
Therefore, the vector force on the charge
Want to see more full solutions like this?
Chapter 19 Solutions
Principles of Physics: A Calculus-Based Text
- Eight small conducting spheres with identical charge q = 2.00 C are placed at the corners of a cube of side d = 0.500 m (Fig. P23.75). What is the total force on the sphere at the origin (sphere A) due to the other seven spheres? Figure P23.75arrow_forwardGiven the arrangement of charged particles shown in Figure P23.37, find the net electrostatic force on the 5.00-nC charged particle located at the origin. Figure P23.37arrow_forwardIn Figure P24.49, a charged particle of mass m = 4.00 g and charge q = 0.250 C is suspended in static equilibrium at the end of an insulating thread that hangs from a very long, charged, thin rod. The thread is 12.0 cm long and makes an angle of 35.0 with the vertical. Determine the linear charge density of the rod. FIGURE P24.49arrow_forward
- (a) Determine the electric field strength at a point 1.00 cm to the left of the middle charge shown in Figure P15.10. (b) If a charge of 2.00 C is placed at this point, what are the magnitude and direction of the force on it?arrow_forwardCharges A, B, and C are arranged in the xy plane with qA = 5.60 C, qB = 4.00 C, and qC = 2.30 /C (Fig. P23.43). What are the magnitude and direction of the electrostatic force on charge B? Figure P23.43arrow_forwardA conducting rod carrying a total charge of +9.00 C is bent into a semicircle of radius R = 33.0 cm, with its center of curvature at the origin (Fig.P24.75). The charge density along the rod is given by = 0 sin , where is measured clockwise from the +x axis. What is the magnitude of the electric force on a 1.00-C charged particle placed at the origin?arrow_forward
- Three charged spheres are at rest in a plane as shown in Figure P23.70. Spheres A and B are fixed, but sphere C is attached to the ceiling by a lightweight thread. The tension in the string is 0.240 N. Spheres A and B have charges qA = 28.0 nC and qB = 28.0 nC. What charge is carried by sphere C?arrow_forwardConsider point A in Figure CQ23.6 located an arbitrary distance from two positive point charges in otherwise empty space. (a) Is it possible for an electric field to exist at point A in empty space? Explain. (b) Does charge exist at this point? Explain. (c) Does a force exist at this point? Explain. Figure CQ23.6arrow_forwardFour equally charged particles with charge q are placed at the comers of a square with side length L, as shown in Figure P23.51. A fifth charged particle with charge Q is placed at the center of the square so that the entire system of charges is in static equilibrium. What are the magnitude and sign of the charge Q? Figure P23.51arrow_forward
- A line of positive charge is formed into a semicircle of radius R = 60.0 cm as shown in Figure P23.41. The charge per unit length along the semicircle is given by the expression = 0 cos . The total charge on the semicircle is 12.0 C. Calculate the total total on a charge of 3.00 C placed at the center of curvature P. Figure P23.41arrow_forwardThree point charges are located on a circular arc as shown in Figure P22.19. (a) What is the total electric field at P, the center of the arc? (b) Find the electric force that would be exerted on a 5.00-nC point charge placed at P. Figure P22.19arrow_forwardPanicle A of charge 3.00 104 C is at the origin, particle B of charge 6.00 104 C is at (4.00 m, 0), and panicle C of charge 1.00 104 C is at (0, 3.00 m). (a) What is the x-component of the electric force exerted by A on C? (b) What is the y-component of the force exerted by A on C? (c) Find the magnitude of the force exerted by B on C. (d) Calculate the x-component of the force exerted by B on C. (e) Calculate the y-component of the force exerted by B on C. (f) Sum the two x-components to obtain the resultant x-component of the electric force acting on C. (g) Repeat part (f) for the y-component. (h) Find the magnitude and direction of the resultant electric force acting on C.arrow_forward
- Principles of Physics: A Calculus-Based TextPhysicsISBN:9781133104261Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers with Modern ...PhysicsISBN:9781337553292Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers: Foundations...PhysicsISBN:9781133939146Author:Katz, Debora M.Publisher:Cengage Learning
- Physics for Scientists and EngineersPhysicsISBN:9781337553278Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningPhysics for Scientists and Engineers, Technology ...PhysicsISBN:9781305116399Author:Raymond A. Serway, John W. JewettPublisher:Cengage LearningCollege PhysicsPhysicsISBN:9781305952300Author:Raymond A. Serway, Chris VuillePublisher:Cengage Learning