Fundamentals of General, Organic, and Biological Chemistry (8th Edition)
Fundamentals of General, Organic, and Biological Chemistry (8th Edition)
8th Edition
ISBN: 9780134015187
Author: John E. McMurry, David S. Ballantine, Carl A. Hoeger, Virginia E. Peterson
Publisher: PEARSON
Question
Book Icon
Chapter 19, Problem 19.91GP

(a)

Interpretation Introduction

Interpretation:

The sample which contains more phenolase should be given.

Concept introduction:

Enzyme:

  • It is a protein or a molecule which can act as a catalyst for a biological reaction.
  • Does not affect the equilibrium point of the reaction.
  • Active site of the enzyme is the region where the reaction takes place.
  • Enzyme’s activity can be specific which means the activity is limited to a certain substrate and a certain type of reaction and it is referred to as specificity of the enzyme.

Turnover number:

It is the maximum number of substrate molecules acted upon by one molecule of enzyme per unit time and most of enzymes turn over 101000persecond

(b)

Interpretation Introduction

Interpretation:

The sample which contains more catalase should be given.

Concept introduction:

Enzyme:

  • It is a protein or a molecule which can act as a catalyst for a biological reaction.
  • Does not affect the equilibrium point of the reaction.
  • Active site of the enzyme is the region where the reaction takes place.
  • Enzyme’s activity can be specific which means the activity is limited to a certain substrate and a certain type of reaction and it is referred to as specificity of the enzyme.

Turnover number:

It is the maximum number of substrate molecules acted upon by one molecule of enzyme per unit time and most of enzymes turn over 101000persecond

(c)

Interpretation Introduction

Interpretation:

The variables which affect the rate of reaction should be given.

Concept introduction:

Enzyme:

  • It is a protein or a molecule which can act as a catalyst for a biological reaction.
  • Does not affect the equilibrium point of the reaction.
  • Active site of the enzyme is the region where the reaction takes place.
  • Enzyme’s activity can be specific which means the activity is limited to a certain substrate and a certain type of reaction and it is referred to as specificity of the enzyme.

Turnover number:

It is the maximum number of substrate molecules acted upon by one molecule of enzyme per unit time and most of enzymes turn over 101000persecond

(d)

Interpretation Introduction

Interpretation:

The enzyme which has the higher turnover rate should be given.

Concept introduction:

Enzyme:

  • It is a protein or a molecule which can act as a catalyst for a biological reaction.
  • Does not affect the equilibrium point of the reaction.
  • Active site of the enzyme is the region where the reaction takes place.
  • Enzyme’s activity can be specific which means the activity is limited to a certain substrate and a certain type of reaction and it is referred to as specificity of the enzyme.

Turnover number:

It is the maximum number of substrate molecules acted upon by one molecule of enzyme per unit time and most of enzymes turn over 101000persecond

Blurred answer
Students have asked these similar questions
Decylic acid is a saturated fatty acid that occurs naturally in coconut oil and palm kernel oil. Calculate the net ATP yield when decylic acid undergoes complete B oxidation. The formula of decylic acid is shown below: (Given: The oxidation of one NADH yields 2.5 ATP; the oxidation of one FADH2 yields 1.5 ATP; and the oxidation of one acetyl CoA yields 10 ATP.) O 50 ATP O 52 ATP 66 ATP OH O 64 ATP
Malate dehydrogenase is an enzyme that converts malate to oxaloacetate in the last stage of the TCA Cycle (citric acid cycle/Krebs cyde), represented by the following equation: NAD+ Malate Oxaloacetate NADH A group of students carried out an experiment to determine the optimum temperature for the activity of a commercially produced malate dehydrogenase (from yeast) at several different temperatures. A series of test tubes was set up containing 2.0 cm of phosphate buffer with a pH of 7.5, 0.1 cm? of NADH, 0.1 cm of malate dehydrogenase and 0.7 cm3 of water. The tubes were incubated in water baths at the various temperatures for 5 minutes. At certain time intervals each tube was placed in a colorimeter, set at an absorbance value of 1.0. The reaction was then started by adding 0.1 cm? of oxaloacetic acid to the tube. Enzyme activity was measured by following the decrease in absorbance for 120 seconds. The experiment was repeated to give duplicate results. Enzyme activity was then…
The graph shows the effect of ATP on the allosteric enzyme phosphofructokinase-1 (PFK-1). PFK-1 activity (% of Vmax) 100 80 60 40 20 0 Low [ADP] [ATP] High [ADP] For a given concentration of fructose 6-phosphate, the PFK-1 activity increases with increasing concentrations of ATP, but there is a point beyond which increasing the concentration of ATP inhibits the enzyme.

Chapter 19 Solutions

Fundamentals of General, Organic, and Biological Chemistry (8th Edition)

Ch. 19.5 - Prob. 19.11PCh. 19.5 - Prob. 19.12PCh. 19.6 - Prob. 19.13PCh. 19.6 - Prob. 19.14PCh. 19.7 - (a) L-Threonine is converted to L-isoleucine in a...Ch. 19.8 - AZT (zidovudine) inhibits the synthesis of the HIV...Ch. 19.8 - Prob. 19.3CIAPCh. 19.8 - Prob. 19.16PCh. 19.9 - Does the enzyme described in each of the following...Ch. 19.9 - Prob. 19.18PCh. 19.9 - Compare the structures of vitamin A and vitamin C....Ch. 19.9 - Prob. 19.20PCh. 19.9 - Prob. 19.21KCPCh. 19.9 - Prob. 19.22PCh. 19.9 - Prob. 19.4CIAPCh. 19.9 - Prob. 19.6CIAPCh. 19.9 - Prob. 19.7CIAPCh. 19.9 - Enzyme levels in blood are often elevated in...Ch. 19.9 - Prob. 19.9CIAPCh. 19.9 - Prob. 19.23PCh. 19 - Prob. 19.24UKCCh. 19 - Prob. 19.25UKCCh. 19 - Prob. 19.26UKCCh. 19 - Prob. 19.27UKCCh. 19 - Prob. 19.28APCh. 19 - Explain how the following mechanisms regulate...Ch. 19 - Prob. 19.30APCh. 19 - Prob. 19.31APCh. 19 - Prob. 19.32APCh. 19 - Prob. 19.33APCh. 19 - Prob. 19.34APCh. 19 - Prob. 19.35APCh. 19 - Prob. 19.36APCh. 19 - Prob. 19.37APCh. 19 - Name an enzyme that acts on each molecule. (a)...Ch. 19 - Name an enzyme that acts on each molecule. (a)...Ch. 19 - What features of enzymes make them so specific in...Ch. 19 - Describe in general terms how enzymes act as...Ch. 19 - Prob. 19.42APCh. 19 - Prob. 19.43APCh. 19 - Prob. 19.44APCh. 19 - Prob. 19.45APCh. 19 - Prob. 19.46APCh. 19 - Prob. 19.47APCh. 19 - What is the difference between the lock-and-key...Ch. 19 - Why is the induced-fit model a more likely model...Ch. 19 - Prob. 19.50APCh. 19 - Prob. 19.51APCh. 19 - How do you explain the observation that pepsin, a...Ch. 19 - Prob. 19.53APCh. 19 - Prob. 19.54APCh. 19 - Prob. 19.55APCh. 19 - Prob. 19.56APCh. 19 - Prob. 19.57APCh. 19 - The text discusses three forms of enzyme...Ch. 19 - Prob. 19.59APCh. 19 - Prob. 19.60APCh. 19 - Prob. 19.62APCh. 19 - Prob. 19.63APCh. 19 - The meat tenderizer used in cooking is primarily...Ch. 19 - Prob. 19.65APCh. 19 - Why do allosteric enzymes have two types of...Ch. 19 - Prob. 19.67APCh. 19 - Prob. 19.68APCh. 19 - Prob. 19.69APCh. 19 - Prob. 19.70APCh. 19 - Prob. 19.71APCh. 19 - Prob. 19.72APCh. 19 - Prob. 19.73APCh. 19 - Prob. 19.74APCh. 19 - Prob. 19.75APCh. 19 - Prob. 19.76APCh. 19 - Prob. 19.77APCh. 19 - Prob. 19.78APCh. 19 - Prob. 19.79APCh. 19 - Prob. 19.80CPCh. 19 - Prob. 19.81CPCh. 19 - Prob. 19.82CPCh. 19 - Prob. 19.83CPCh. 19 - Prob. 19.84CPCh. 19 - Prob. 19.85CPCh. 19 - Prob. 19.86CPCh. 19 - Prob. 19.87CPCh. 19 - Prob. 19.88GPCh. 19 - The ability to change a selected amino acid...Ch. 19 - Prob. 19.90GPCh. 19 - Prob. 19.91GP
Knowledge Booster
Background pattern image
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
  • Text book image
    Biochemistry
    Biochemistry
    ISBN:9781305577206
    Author:Reginald H. Garrett, Charles M. Grisham
    Publisher:Cengage Learning
Text book image
Biochemistry
Biochemistry
ISBN:9781305577206
Author:Reginald H. Garrett, Charles M. Grisham
Publisher:Cengage Learning