Thermodynamics: An Engineering Approach
Thermodynamics: An Engineering Approach
9th Edition
ISBN: 9781259822674
Author: Yunus A. Cengel Dr., Michael A. Boles
Publisher: McGraw-Hill Education
bartleby

Videos

Textbook Question
Book Icon
Chapter 17.7, Problem 110P

Steam enters a converging nozzle at 5.0 MPa and 400°C with a negligible velocity, and it exits at 3.0 MPa. For a nozzle exit area of 75 cm2, determine the exit velocity, mass flow rate, and exit Mach number if the nozzle (a) is isentropic and (b) has an efficiency of 94 percent.

a)

Expert Solution
Check Mark
To determine

The exit velocity, mass flow rate, and exit Mach number if the nozzle is isentropic.

Answer to Problem 110P

The exit velocity of the stream is 528.5m/s.

The mass flow rate is 46.08kg/s.

The Mach number at the exit of nozzle is 0.917.

Explanation of Solution

For isentropic,

The flow of steam through the nozzle is steady and isentropic.

Write the expression of energy balance equation for the converging-diverging nozzle.

h1+V12/2=h2+V22/2

Inlet velocity is equal to zero V1=0.

V2=2(h1h2) (I)

Here, enthalpy at exit is h2, enthalpy at inlet is h1, velocity of steam at the inlet of nozzle is V1, and velocity of steam at exit of nozzle is V2 .

Write the expression to calculate the exit area of the nozzle.

A2=m˙v2V2m˙=A2V2v2 (II)

Here, mass flow rate of steam is m˙ , specific volume of the steam at the exit is v2 .

Write the expression to calculate the velocity of sound through the steam at the exit of nozzle.

c2=(Pρ)s1/2=(ΔPΔ(1/v))s1/2 (III)

Here, pressure drop in the nozzle is ΔP, and drop in the specific volume of the steam is Δ(1/v).

Write the expression to calculate the Mach number for the steam at the exit of nozzle.

Ma2=V2c2 (IV)

Here, Mach number of the steam at the exit is Ma2 .

Conclusion:

Refer Table A-6, “Superheated water”, obtain the values of h01, and s2s at inlet pressure of 5MPa and temperature of 400°C as 3196.7kJ/kg, and 6.6483kJ/kgK respectively.

Here, stagnation enthalpy at the inlet is h01, at superheated condition the entropy of saturated steam is s2s.

Refer Table A-6, “Superheated water”, obtain the values of h2 at an entropy of 6.6483kJ/kgK and exit pressure of 3MPa as 3057kJ/kg.

The stagnation enthalpy of steam at the inlet is equal to the actual enthalpy

at the inlet (h01=h1).

Substitute 3196.7kJ/kg for h1 and 3057kJ/kg for h2 in Equation (II).

V2=2(3196.7kJ/kg3057kJ/kg)=2(3196.7kJ/kg3057kJ/kg)(1000m2/s21kJ/kg)=528.5m/s

Thus, the exit velocity of the stream is 528.5m/s.

Refer Table A-6, “Superheated water”, obtain the value of v2 at the entropy of 7.7642kJ/kgK and a exit pressure of 3MPa as 0.08601m3/kg.

Substitute 75cm2 for A, 0.08601m3/kg for v2, and 528.5m/s  for V2 in Equation (III).

m˙=75cm2×528.5m/s0.08601m3/kg=75cm2(1m210000cm2)×528.5m/s0.08601m3/kg=46.08kg/s

Therefore, the mass flow rate is 46.08kg/s.

Refer Table A-6, “Superheated water”, obtain the value of specific volume of steam at the entropy of 7.7642kJ/kgK at pressure just below and above the specified pressure of 2.5MPa and 3.5MPa as 0.09906m3/kg and 0.07632m3/kg respectively.

Substitute (35002500)kPa for ΔP, and (10.0990610.07632)kg/m3 for Δ(1/v) in Equation (IV).

c2=((35002500)kPa(10.0990610.07632)kg/m3)1/2=((35002500)kPa(10.0990610.07632)kg/m3(1000m2/s21kPam3))1/2=576.6m/s

Substitute 576.6m/s for c2, and 528.5m/s for V2 in Equation (V).

Ma2=528.5m/s576.6m/s=0.917

Hence, the Mach number at the exit of nozzle is 0.917.

b)

Expert Solution
Check Mark
To determine

The exit velocity, mass flow rate, and exit Mach number if the has an efficiency of 94 percent.

Answer to Problem 110P

The exit velocity of the stream is 512.4m/s.

The mass flow rate is 44.34kg/s.

The Mach number at the exit of nozzle is 0.885.

Explanation of Solution

Nozzle has an efficiency of 94 percent:

Write the expression for the efficiency of nozzle.

ηN=h01h2h01h2s (V)

Here, efficiency of nozzle is ηN, stagnation enthalpy at the inlet is h01, enthalpy at exit is h2, and superheated enthalpy at exit is h2s.

Write the expression of energy balance equation for the converging-diverging nozzle.

h1+V12/2=h2+V22/2

Inlet velocity is equal to zero V1=0.

V2=2(h1h2) (VI)

Here, velocity of steam at the inlet of nozzle is V1, and velocity of steam at exit of nozzle is V2 .

Write the expression to calculate the exit area of the nozzle.

A2=m˙v2V2 (VII)

Here, mass flow rate of steam is m˙ , specific volume of the steam at the exit is v2 .

Write the expression to calculate the velocity of sound through the steam at the exit of nozzle.

c2=(Pρ)s1/2=(ΔPΔ(1/v))s1/2 (VIII)

Here, pressure drop in the nozzle is ΔP, and drop in the specific volume of the steam is Δ(1/v).

Write the expression to calculate the Mach number for the steam at the exit of nozzle.

Ma2=V2c2 (IX)

Here, Mach number of the steam at the exit is Ma2 .

Conclusion:

Refer Table A-6, “Superheated water”, obtain the values of h01, and s2s at inlet pressure of 5MPa and temperature of 400°C as 3196.7kJ/kg, and 6.6483kJ/kgK respectively.

Here, at superheated condition the entropy of saturated steam is s2s.

Refer Table A-6, “Superheated water”, obtain the values of h2s at an entropy of 6.6483kJ/kgK and a pressure of 3MPa as 3057kJ/kg.

Substitute 3057kJ/kg for h2s, 3196.7kJ/kg for h01, and 0.90 for ηN in Equation (V).

94%=3196.7kJ/kgh23196.7kJ/kg3057kJ/kg94(1100)=3196.7kJ/kgh23196.7kJ/kg3057kJ/kgh2=3065.4kJ/kg

The stagnation enthalpy of steam at the inlet is equal to the actual enthalpy

at the inlet (h01=h1).

Substitute 3196.7kJ/kg for h1 and 3065.4kJ/kg for h2 in Equation (VI).

V2=2(3196.7kJ/kg3065.4kJ/kg)=2(3196.7kJ/kg3065.4kJ/kg)(1000m2/s21kJ/kg)=512.4m/s

Thus, the exit velocity of the stream is 512.4m/s.

Refer Table A-6, “Superheated water”, obtain the value of v2 at the entropy of 7.7642kJ/kgK and a exit pressure of 3MPa as 0.08666m3/kg.

Substitute 75cm2 for A2, 0.08666m3/kg for v2, and 512.4m/s for V2 in Equation (VII).

m˙=75cm2×512.4m/s0.08666m3/kg=75cm2(1m210000cm2)×512.4m/s0.08666m3/kg=44.34kg/s

Thus, the mass flow rate is 44.34kg/s.

Refer Table A-6, “Superheated water”, obtain the value of specific volume of steam Δ(1/v) at the entropy of 7.7642kJ/kgK at pressure just below and above the specified pressure of 2.5MPa and 3.5MPa as 0.09981m3/kg and 0.07689m3/kg respectively.

Substitute (35002500)kPa for ΔP, and (10.0998110.07689)kg/m3 for Δ(1/v) in Equation (VIII).

c2=((35002500)kPa(10.0998110.07689)kg/m3)1/2=((35002500)kPa(10.0998110.07689)kg/m3(1000m2/s21kPam3))1/2=578.7m/s

Substitute 578.7m/s for c2, and 512.4m/s for V2 in Equation (IX).

Ma2=512.4m/s578.7m/s=0.885

Thus, the Mach number at the exit of nozzle is 0.885.

Want to see more full solutions like this?

Subscribe now to access step-by-step solutions to millions of textbook problems written by subject matter experts!
Students have asked these similar questions
3. Air enters a converging-diverging nozzle at 1.50 MPa and 900 K with a negligible velocity. The flow is steady, one-dimensional, and isentropic with k =1.4. For an exit Mach number of Ma = 2.4 and a throat area of 15 cm2, determine (a) the T, P and p in the throat, (b) the T, P and p in the exit plane, including the exit area, and (c) the mass flow rate through the nozzle
Consider subsonic Fanno flow of air with an inlet Mach number of 0.70. If the Mach number increases to 0.90 at the duct exit as a result of friction, will the (a) stagnation temperature T0, (b) stagnation pressure P0, and (c) entropy s of the fluid increase, decrease, or remain constant during this process?
Air flowing steadily in a nozzle experiences a normal shock at a Mach number of Ma = 2.6. The pressure and temperature of air are 52 kPa and 270 K, respectively. Now, helium undergoes a normal shock under the same conditions. Calculate the entropy changes of air and helium across the normal shock. The properties of air are R = 0.287 kJ/kg-K and cp= 1.005 kJ/kg-K, and the properties of helium are R=2.0769 kJ/kg-K and cp=5.1926 kJ/kg.K. The entropy change for air is The entropy change for helium is kJ/kg-K. kJ/kg-K.

Chapter 17 Solutions

Thermodynamics: An Engineering Approach

Ch. 17.7 - Prob. 11PCh. 17.7 - Prob. 12PCh. 17.7 - Prob. 13PCh. 17.7 - Prob. 14PCh. 17.7 - Prob. 15PCh. 17.7 - Prob. 16PCh. 17.7 - Prob. 17PCh. 17.7 - Prob. 18PCh. 17.7 - Prob. 19PCh. 17.7 - Prob. 20PCh. 17.7 - Prob. 21PCh. 17.7 - Prob. 22PCh. 17.7 - Prob. 23PCh. 17.7 - Prob. 24PCh. 17.7 - Prob. 25PCh. 17.7 - Prob. 26PCh. 17.7 - The isentropic process for an ideal gas is...Ch. 17.7 - Is it possible to accelerate a gas to a supersonic...Ch. 17.7 - Prob. 29PCh. 17.7 - Prob. 30PCh. 17.7 - A gas initially at a supersonic velocity enters an...Ch. 17.7 - Prob. 32PCh. 17.7 - Prob. 33PCh. 17.7 - Prob. 34PCh. 17.7 - Prob. 35PCh. 17.7 - Prob. 36PCh. 17.7 - Prob. 37PCh. 17.7 - Air at 25 psia, 320F, and Mach number Ma = 0.7...Ch. 17.7 - Prob. 39PCh. 17.7 - Prob. 40PCh. 17.7 - Prob. 41PCh. 17.7 - Prob. 42PCh. 17.7 - Prob. 43PCh. 17.7 - Is it possible to accelerate a fluid to supersonic...Ch. 17.7 - Prob. 45PCh. 17.7 - Prob. 46PCh. 17.7 - Prob. 47PCh. 17.7 - Consider subsonic flow in a converging nozzle with...Ch. 17.7 - Consider a converging nozzle and a...Ch. 17.7 - Prob. 50PCh. 17.7 - Prob. 51PCh. 17.7 - Prob. 52PCh. 17.7 - Prob. 53PCh. 17.7 - Prob. 54PCh. 17.7 - Prob. 57PCh. 17.7 - Prob. 58PCh. 17.7 - Prob. 59PCh. 17.7 - Prob. 60PCh. 17.7 - Prob. 61PCh. 17.7 - Air enters a nozzle at 0.5 MPa, 420 K, and a...Ch. 17.7 - Prob. 63PCh. 17.7 - Are the isentropic relations of ideal gases...Ch. 17.7 - What do the states on the Fanno line and the...Ch. 17.7 - It is claimed that an oblique shock can be...Ch. 17.7 - Prob. 69PCh. 17.7 - Prob. 70PCh. 17.7 - For an oblique shock to occur, does the upstream...Ch. 17.7 - Prob. 72PCh. 17.7 - Prob. 73PCh. 17.7 - Prob. 74PCh. 17.7 - Prob. 75PCh. 17.7 - Prob. 76PCh. 17.7 - Prob. 77PCh. 17.7 - Prob. 78PCh. 17.7 - Prob. 79PCh. 17.7 - Air flowing steadily in a nozzle experiences a...Ch. 17.7 - Air enters a convergingdiverging nozzle of a...Ch. 17.7 - Prob. 84PCh. 17.7 - Prob. 85PCh. 17.7 - Consider the supersonic flow of air at upstream...Ch. 17.7 - Prob. 87PCh. 17.7 - Prob. 88PCh. 17.7 - Air flowing at 40 kPa, 210 K, and a Mach number of...Ch. 17.7 - Prob. 90PCh. 17.7 - Prob. 91PCh. 17.7 - Prob. 92PCh. 17.7 - What is the characteristic aspect of Rayleigh...Ch. 17.7 - Prob. 94PCh. 17.7 - Prob. 95PCh. 17.7 - What is the effect of heat gain and heat loss on...Ch. 17.7 - Consider subsonic Rayleigh flow of air with a Mach...Ch. 17.7 - Prob. 98PCh. 17.7 - Prob. 99PCh. 17.7 - Air is heated as it flows subsonically through a...Ch. 17.7 - Prob. 101PCh. 17.7 - Prob. 102PCh. 17.7 - Prob. 103PCh. 17.7 - Air enters a rectangular duct at T1 = 300 K, P1 =...Ch. 17.7 - Prob. 106PCh. 17.7 - Prob. 107PCh. 17.7 - Air is heated as it flows through a 6 in 6 in...Ch. 17.7 - What is supersaturation? Under what conditions...Ch. 17.7 - Steam enters a converging nozzle at 5.0 MPa and...Ch. 17.7 - Steam enters a convergingdiverging nozzle at 1 MPa...Ch. 17.7 - Prob. 112PCh. 17.7 - Prob. 113RPCh. 17.7 - Prob. 114RPCh. 17.7 - Prob. 115RPCh. 17.7 - Prob. 116RPCh. 17.7 - Prob. 118RPCh. 17.7 - Prob. 119RPCh. 17.7 - Using Eqs. 174, 1713, and 1714, verify that for...Ch. 17.7 - Prob. 121RPCh. 17.7 - Prob. 122RPCh. 17.7 - Prob. 123RPCh. 17.7 - Prob. 124RPCh. 17.7 - Prob. 125RPCh. 17.7 - Prob. 126RPCh. 17.7 - Nitrogen enters a convergingdiverging nozzle at...Ch. 17.7 - An aircraft flies with a Mach number Ma1 = 0.9 at...Ch. 17.7 - Prob. 129RPCh. 17.7 - Helium expands in a nozzle from 220 psia, 740 R,...Ch. 17.7 - Helium expands in a nozzle from 0.8 MPa, 500 K,...Ch. 17.7 - Air is heated as it flows subsonically through a...Ch. 17.7 - Air is heated as it flows subsonically through a...Ch. 17.7 - Prob. 134RPCh. 17.7 - Prob. 135RPCh. 17.7 - Air is cooled as it flows through a 30-cm-diameter...Ch. 17.7 - Saturated steam enters a convergingdiverging...Ch. 17.7 - Prob. 138RPCh. 17.7 - Prob. 145FEPCh. 17.7 - Prob. 146FEPCh. 17.7 - Prob. 147FEPCh. 17.7 - Prob. 148FEPCh. 17.7 - Prob. 149FEPCh. 17.7 - Prob. 150FEPCh. 17.7 - Prob. 151FEPCh. 17.7 - Prob. 152FEPCh. 17.7 - Consider gas flow through a convergingdiverging...Ch. 17.7 - Combustion gases with k = 1.33 enter a converging...
Knowledge Booster
Background pattern image
Mechanical Engineering
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.
Similar questions
SEE MORE QUESTIONS
Recommended textbooks for you
Text book image
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Text book image
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Text book image
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Text book image
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Text book image
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Text book image
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Intro to Compressible Flows — Lesson 1; Author: Ansys Learning;https://www.youtube.com/watch?v=OgR6j8TzA5Y;License: Standard Youtube License