
Concept explainers
Air is heated as it flows through a 6 in × 6 in square duct with negligible friction. At the inlet, air is at T1 = 700 R, P1 = 80 psia, and V1 = 260 ft/s. Determine the rate at which heat must be transferred to the air to choke the flow at the duct exit, and the entropy change of air during this process.

The rate of heat transfer in the duct.
The entropy change in the duct.
Answer to Problem 108P
The rate of heat transfer in the duct is
The entropy change in the duct is
Explanation of Solution
Determine the inlet density of air.
Here, the inlet pressure of air is
Determine the mass flow rate of the duct.
Here, the inlet velocity of air is
Determine the inlet stagnation temperature of air.
Here, the inlet static temperature of ideal gas is
Determine the relation of ideal gas speed of sound at the inlet.
Here, the specific heat ratio of air is
Determine the speed of sound at the inlet.
The inlet velocity of the air flow in the device is
Determine the static temperature in the duct.
Here, the ratio of Rayleigh flow for inlet temperature is
Determine the static pressure in the duct.
Here, the ratio of Rayleigh flow for inlet pressure is
Determine the stagnation temperature in the duct.
Here, the ratio of Rayleigh flow for exit stagnation temperature is
Determine the rate of heat transfer of the duct.
Determine the entropy change of the duct.
Conclusion:
From the Table A-2E, “Ideal-gas specific heats of various common gases” to obtain value of universal gas constant, specific heat of pressure, and the specific heat ratio of air at
Substitute
Substitute
Substitute
Substitute 1.4 for k,
Substitute
Refer to Table A-34, “Rayleigh flow function for an ideal gas with k=1.4”, to obtain the value ratio of static temperature, pressure, and stagnation temperature at
Write the formula of interpolation method of two variables.
Here, the variables denote by x and y is ratio of stagnation temperature and Mach number.
Show the Mach number at
S. No |
Mach number |
ratio of stagnation temperature |
1 | ||
2 | ||
3 |
Calculate ratio of static temperature, pressure, and stagnation temperature at
Substitute
From above calculation the ratio of stagnation temperature at
Repeat the Equation (XII), to obtain the value of inlet ratio of static temperature and pressure at
From the Table A-34, “Rayleigh flow function for an ideal gas with k=1.4”, to obtain the value of the outlet ratio of temperature, pressure, and velocity at 1 outlet Mach number as:
Substitute
Substitute 80 psia for
Substitute
Substitute
Thus, the rate of heat transfer in the duct is
Substitute
Thus, the entropy change in the duct is
Want to see more full solutions like this?
Chapter 17 Solutions
Thermodynamics: An Engineering Approach
- Correct answers are written below. Detailed and correct solution only with fbd. I will upvote. 1: A 3 m alloy shaft fixed at one end has a torsional shearing stress capacity of 55 MPa. Due to improper fabrication, its cross-sectionalarea has become irregularly shaped. Its effective polar moment of inertia has become 2 x10-7 m4, and the maximum torque stress acts at 7.5 cm fromthe center of the shaft.[1]: If the shaft is to be replaced by a properly manufactured solid circular shaft that has a maximumshearing stress capacity of 70 MN/m2, what is the minimum diameter required so it can withstand the sameload? [2]: Calculate the thickness of a hollow circular shaft with the same outside diameter calculated initem [1] that can carry the same load. Limit the maximum shearing stress of the hollow circular shaft to0.09 GPa.Determine the angle of twist on the free end of the shaft. Use G = 150 x103 GPa. [3]: Use the solidcircular shaft from [1] and use the hollow circular shaft from [2].…arrow_forwardtwo closed 1 m3 chambers are filled with fluid at 25˚C and 1 atm. One is filled with pure carbon dioxide and one is filled with pure water. Only considering the weight of the fluids, which chamber is heavier?arrow_forwardCorrect answers are written below. Detailed and correct solution only with fbd. I will upvote. 1: A 3 m alloy shaft fixed at one end has a torsional shearing stress capacity of 55 MPa. Due to improper fabrication, its cross-sectionalarea has become irregularly shaped. Its effective polar moment of inertia has become 2 x10-7 m4, and the maximum torque stress acts at 7.5 cm fromthe center of the shaft.[1]: If the shaft is to be replaced by a properly manufactured solid circular shaft that has a maximumshearing stress capacity of 70 MN/m2, what is the minimum diameter required so it can withstand the sameload? [2]: Calculate the thickness of a hollow circular shaft with the same outside diameter calculated initem [1] that can carry the same load. Limit the maximum shearing stress of the hollow circular shaft to0.09 GPa.Determine the angle of twist on the free end of the shaft. Use G = 150 x103 GPa. [3]: Use the solidcircular shaft from [1] and use the hollow circular shaft from [2].…arrow_forward
- In using the bolt cutter shown, a worker applies two forces P to the handles. If the magnitude ofP is 500 N, determine the magnitude of the forces exerted by the cutter on the boltarrow_forwardArterioles bifurcate (i.e., split) into capillaries in the circulatory system. Blood flows at a velocity of 20 cm/s through an arteriole with a diameter of 0.20 cm. This vessel bifurcates into two vessels: one with a diameter of 0.17 cm and a blood flow velocity of 18 cm/sec, and one with a diameter of 0.15 cm. Each of these two vessels splits again. The 0.17-cm diameter vessel splits into two vessels, each with a diameter of 0.15 cm. The 0.15-cm diameter vessel splits into two vessels, each with a diameter of 0.12 cm. Determine the mass flow rate and velocity of blood in each of the four vessels at the end of the arteriole bifurcations. You may need to set up several systems, each with a different system boundary, in order to solve this problem.arrow_forward6) Draw a Front, side and Top view for the following objects: p.s. you don't need to label the alphabet ISOMETRIC PICTORIAL VIEW K R C B E R D 0 Aarrow_forward
- Please draw the front top and side view for the following objectarrow_forwardDraw the top viewarrow_forwardSuppose that a steel of eutectoid composition is cooled to 675°C (1250°F) from 760°C (1400°F) in less than 0.5 s and held at this temperature. (a) How long will it take for the austenite-topearlite reaction to go to 50% completion? To 100% completion? (b) Estimate the hardness of the alloy that has completely transformed to pearlite.arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





