Thermodynamics: An Engineering Approach
9th Edition
ISBN: 9781259822674
Author: Yunus A. Cengel Dr., Michael A. Boles
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Question
Chapter 17.7, Problem 29P
To determine
How gas affects (a) the velocity, (b) the temperature, (c) the pressure, and (d) the density of the fluid when a gas initially at a subsonic velocity enters an adiabatic diverging duct.
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
A gas initially at a supersonic velocity enters an adiabatic diverging duct. Discuss how this affects (a) the velocity, (b) the temperature, (c) the pressure, and (d ) the density of the fluid.
A gas initially at a supersonic velocity enters an adiabatic converging duct. Discuss how this affects (a) the velocity, (b) the temperature, (c) the pressure, and (d ) the density of the fluid.
A gas initially at a subsonic velocity enters an adiabatic converging duct. Discuss how this affects (a) the velocity, (b) the temperature, (c) the pressure, and (d ) the density of the fluid.
Chapter 17 Solutions
Thermodynamics: An Engineering Approach
Ch. 17.7 - A high-speed aircraft is cruising in still air....Ch. 17.7 - What is dynamic temperature?Ch. 17.7 - Prob. 3PCh. 17.7 - Prob. 4PCh. 17.7 - Prob. 5PCh. 17.7 - Prob. 6PCh. 17.7 - Calculate the stagnation temperature and pressure...Ch. 17.7 - Prob. 8PCh. 17.7 - Prob. 9PCh. 17.7 - Prob. 10P
Ch. 17.7 - Prob. 11PCh. 17.7 - Prob. 12PCh. 17.7 - Prob. 13PCh. 17.7 - Prob. 14PCh. 17.7 - Prob. 15PCh. 17.7 - Prob. 16PCh. 17.7 - Prob. 17PCh. 17.7 - Prob. 18PCh. 17.7 - Prob. 19PCh. 17.7 - Prob. 20PCh. 17.7 - Prob. 21PCh. 17.7 - Prob. 22PCh. 17.7 - Prob. 23PCh. 17.7 - Prob. 24PCh. 17.7 - Prob. 25PCh. 17.7 - Prob. 26PCh. 17.7 - The isentropic process for an ideal gas is...Ch. 17.7 - Is it possible to accelerate a gas to a supersonic...Ch. 17.7 - Prob. 29PCh. 17.7 - Prob. 30PCh. 17.7 - A gas initially at a supersonic velocity enters an...Ch. 17.7 - Prob. 32PCh. 17.7 - Prob. 33PCh. 17.7 - Prob. 34PCh. 17.7 - Prob. 35PCh. 17.7 - Prob. 36PCh. 17.7 - Prob. 37PCh. 17.7 - Air at 25 psia, 320F, and Mach number Ma = 0.7...Ch. 17.7 - Prob. 39PCh. 17.7 - Prob. 40PCh. 17.7 - Prob. 41PCh. 17.7 - Prob. 42PCh. 17.7 - Prob. 43PCh. 17.7 - Is it possible to accelerate a fluid to supersonic...Ch. 17.7 - Prob. 45PCh. 17.7 - Prob. 46PCh. 17.7 - Prob. 47PCh. 17.7 - Consider subsonic flow in a converging nozzle with...Ch. 17.7 - Consider a converging nozzle and a...Ch. 17.7 - Prob. 50PCh. 17.7 - Prob. 51PCh. 17.7 - Prob. 52PCh. 17.7 - Prob. 53PCh. 17.7 - Prob. 54PCh. 17.7 - Prob. 57PCh. 17.7 - Prob. 58PCh. 17.7 - Prob. 59PCh. 17.7 - Prob. 60PCh. 17.7 - Prob. 61PCh. 17.7 - Air enters a nozzle at 0.5 MPa, 420 K, and a...Ch. 17.7 - Prob. 63PCh. 17.7 - Are the isentropic relations of ideal gases...Ch. 17.7 - What do the states on the Fanno line and the...Ch. 17.7 - It is claimed that an oblique shock can be...Ch. 17.7 - Prob. 69PCh. 17.7 - Prob. 70PCh. 17.7 - For an oblique shock to occur, does the upstream...Ch. 17.7 - Prob. 72PCh. 17.7 - Prob. 73PCh. 17.7 - Prob. 74PCh. 17.7 - Prob. 75PCh. 17.7 - Prob. 76PCh. 17.7 - Prob. 77PCh. 17.7 - Prob. 78PCh. 17.7 - Prob. 79PCh. 17.7 - Air flowing steadily in a nozzle experiences a...Ch. 17.7 - Air enters a convergingdiverging nozzle of a...Ch. 17.7 - Prob. 84PCh. 17.7 - Prob. 85PCh. 17.7 - Consider the supersonic flow of air at upstream...Ch. 17.7 - Prob. 87PCh. 17.7 - Prob. 88PCh. 17.7 - Air flowing at 40 kPa, 210 K, and a Mach number of...Ch. 17.7 - Prob. 90PCh. 17.7 - Prob. 91PCh. 17.7 - Prob. 92PCh. 17.7 - What is the characteristic aspect of Rayleigh...Ch. 17.7 - Prob. 94PCh. 17.7 - Prob. 95PCh. 17.7 - What is the effect of heat gain and heat loss on...Ch. 17.7 - Consider subsonic Rayleigh flow of air with a Mach...Ch. 17.7 - Prob. 98PCh. 17.7 - Prob. 99PCh. 17.7 - Air is heated as it flows subsonically through a...Ch. 17.7 - Prob. 101PCh. 17.7 - Prob. 102PCh. 17.7 - Prob. 103PCh. 17.7 - Air enters a rectangular duct at T1 = 300 K, P1 =...Ch. 17.7 - Prob. 106PCh. 17.7 - Prob. 107PCh. 17.7 - Air is heated as it flows through a 6 in 6 in...Ch. 17.7 - What is supersaturation? Under what conditions...Ch. 17.7 - Steam enters a converging nozzle at 5.0 MPa and...Ch. 17.7 - Steam enters a convergingdiverging nozzle at 1 MPa...Ch. 17.7 - Prob. 112PCh. 17.7 - Prob. 113RPCh. 17.7 - Prob. 114RPCh. 17.7 - Prob. 115RPCh. 17.7 - Prob. 116RPCh. 17.7 - Prob. 118RPCh. 17.7 - Prob. 119RPCh. 17.7 - Using Eqs. 174, 1713, and 1714, verify that for...Ch. 17.7 - Prob. 121RPCh. 17.7 - Prob. 122RPCh. 17.7 - Prob. 123RPCh. 17.7 - Prob. 124RPCh. 17.7 - Prob. 125RPCh. 17.7 - Prob. 126RPCh. 17.7 - Nitrogen enters a convergingdiverging nozzle at...Ch. 17.7 - An aircraft flies with a Mach number Ma1 = 0.9 at...Ch. 17.7 - Prob. 129RPCh. 17.7 - Helium expands in a nozzle from 220 psia, 740 R,...Ch. 17.7 - Helium expands in a nozzle from 0.8 MPa, 500 K,...Ch. 17.7 - Air is heated as it flows subsonically through a...Ch. 17.7 - Air is heated as it flows subsonically through a...Ch. 17.7 - Prob. 134RPCh. 17.7 - Prob. 135RPCh. 17.7 - Air is cooled as it flows through a 30-cm-diameter...Ch. 17.7 - Saturated steam enters a convergingdiverging...Ch. 17.7 - Prob. 138RPCh. 17.7 - Prob. 145FEPCh. 17.7 - Prob. 146FEPCh. 17.7 - Prob. 147FEPCh. 17.7 - Prob. 148FEPCh. 17.7 - Prob. 149FEPCh. 17.7 - Prob. 150FEPCh. 17.7 - Prob. 151FEPCh. 17.7 - Prob. 152FEPCh. 17.7 - Consider gas flow through a convergingdiverging...Ch. 17.7 - Combustion gases with k = 1.33 enter a converging...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- Consider subsonic Fanno flow accelerated to sonic velocity (Ma = 1) at the duct exit as a result of frictional effects. If the duct length is increased further, will the flow at the duct exit be supersonic, subsonic, or remain sonic? Will the mass flow rate of the fluid increase, decrease, or remain constant as a result of increasing the duct length?arrow_forward1- Air enters a nozzle at 0.2 MPa, 350 K, and a stagnation velocity. Assuming isentropic flow, determine the pressure and temperature of air at a location where the air velocity equals the speed of sound. What is the ratio of the area at this location to the entrance area?arrow_forwardConsider supersonic Fanno flow that is decelerated to sonic velocity (Ma = 1) at the duct exit as a result of frictional effects. If the duct length is increased further, will the flow at the duct exit be supersonic, subsonic, or remain sonic? Will the mass flow rate of the fluid increase, decrease, or remain constant as a result of increasing the duct length?arrow_forward
- Consider subsonic Fanno flow of air with an inlet Mach number of 0.70. If the Mach number increases to 0.90 at the duct exit as a result of friction, will the (a) stagnation temperature T0, (b) stagnation pressure P0, and (c) entropy s of the fluid increase, decrease, or remain constant during this process?arrow_forwardI need the answer as soon as possiblearrow_forwardConsider subsonic flow in a converging nozzle with specified conditions at the nozzle inlet and critical pressure at the nozzle exit. What is the effect of dropping the back pressure well below the critical pressure on (a) the exit velocity, (b) the exit pressure, and (c) the mass flow rate through the nozzle?arrow_forward
- Consider the isentropic flow of a fluid through a converging–diverging nozzle with a subsonic velocity at the throat. How does the diverging section affect (a) the velocity, (b) the pressure, and (c) the mass flow rate of the fluid?arrow_forwardConsider subsonic flow in a converging nozzle with fixed inlet conditions. What is the effect of dropping the back pressure to the critical pressure on (a) the exit velocity, (b) the exit pressure, and (c) the mass flow rate through the nozzle?arrow_forwardConsider gas flow through a converging–diverging nozzle. Of the five following statements, select the one that is incorrect: (a) The fluid velocity at the throat can never exceed the speed of sound. (b) If the fluid velocity at the throat is below the speed of sound, the diversion section will act like a diffuser. (c) If the fluid enters the diverging section with a Mach number greater than one, the flow at the nozzle exit will be supersonic. (d ) There will be no flow through the nozzle if the back pressure equals the stagnation pressure. (e) The fluid velocity decreases, the entropy increases, and stagnation enthalpy remains constant during flow through a normal shock.arrow_forward
- Consider an aircraft engine operating at subsonic conditions with a nozzle that has an exit area of 142in2 and a nozzle inlet/exit area ratio of 2. Engine gases flowing at 30lbm/s enter the nozzle with a pressure of 0.83 bar and avelocity of 144 m/s. The gases expand through the nozzle, exiting at the ambient pressure of 7.25 psia with a velocity of 1320 ft/s. a) For these conditions, what is the force (in units of lbf) trasmitted to the structure holding the nozzle. Provide both direction and magnitude of the force. b) Based on your results, comment on whether the force acting on the nozzle would hlep speed up or slow down a vehicle that used this nozzle as part of a jet propulsion system. I mostly wanted help in part b. Thank you.arrow_forwardShow that the point of maximum entropy on the Fanno line for the adiabatic steady flow of a fluid in a duct corresponds to the sonic velocity, Ma = 1.arrow_forwardAn ideal gas flows through a passage that first converges and then diverges during an adiabatic, reversible, steady-flow process. For supersonic flow at the inlet, sketch the variation of pressure, velocity, and Mach number along the length of the nozzle when the Mach number at the minimum flow area is equal to unity.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
Intro to Compressible Flows — Lesson 1; Author: Ansys Learning;https://www.youtube.com/watch?v=OgR6j8TzA5Y;License: Standard Youtube License