
Concept explainers
Air flowing steadily in a nozzle experiences a normal shock at a Mach number of Ma = 2.5. If the pressure and temperature of air are 10.0 psia and 440.5 R, respectively, upstream of the shock, calculate the pressure, temperature, velocity, Mach number, and stagnation pressure downstream of the shock. Compare these results to those for helium undergoing a normal shock under the same conditions.

The pressure, temperature, velocity, Mach number, and stagnation pressure downstream of the shock and for helium undergoing a normal shock under the same conditions.
Answer to Problem 80P
The actual temperature of air after the normal shock is
The actual pressure of air after the normal shock is
The stagnation pressure of air after the normal shock is
The Mach number value of air after the normal shock is
The velocity of air after the normal shock is
The Mach number of helium gas after the normal shock is
The actual temperature of helium after the normal shock is
The actual pressure of helium after the normal shock is
The stagnation pressure of air after the normal shock is
The velocity of air after the normal shock is
Explanation of Solution
Refer Table A-32, “One-dimensional isentropic compressible-flow functions for an ideal
gas with
Here, actual temperature after the shock is
Write the expression to calculate the velocity of sound after the normal shock.
Here, velocity of sound after the shock is
Write the expression to calculate the velocity of air after the normal shock.
The value from the table is not considered for Mach number
Write the expression to calculate the Mach number for helium after the normal shock.
Here, Mach number of helium before the normal shock is
Write the expression to calculate the actual pressure of helium gas after the normal shock.
Here, actual pressure of helium after the shock is
Write the expression to calculate the actual temperature of helium gas after the normal shock.
Here, actual temperature of helium after the shock is
Write the expression to calculate the actual pressure of helium gas after the normal shock.
Here, stagnation pressure of helium after the shock is
Write the expression to calculate the velocity of sound after the normal shock for helium.
Here, velocity of sound after the shock for helium is
Write the expression to calculate the velocity of helium after the normal shock
Conclusion:
For air:
Refer Table A-2E, “Ideal-gas specific heats of various common gases”, obtain the following properties for air at room temperature.
Substitute
Thus, the actual temperature of air after the normal shock is
Substitute
Thus, the actual pressure of air after the normal shock is
The actual pressure before the normal shock
Substitute
Thus, the stagnation pressure of air after the normal shock is
From Table A-32, “One-dimensional isentropic compressible-flow functions for an ideal
gas with
Thus, the Mach number value of air after the normal shock is
Substitute 1.4 for k,
Substitute 0.513 for
Thus, the velocity of air after the normal shock is
For helium:
Refer Table A-E, “Ideal-gas specific heats of various common gases”, obtain the following properties for helium.
Substitute 2.5 for
Thus, the Mach number of helium gas after the normal shock is
Substitute 1.667 for k, 2.5 for
Substitute 1.667 for k, 2.5 for
Substitute 1.667 for k, 2.5 for
Substitute
Thus, the actual pressure of helium after the normal shock is
Substitute
Thus, the actual temperature of helium after the normal shock is
Since the flow through the nozzle is isentropic
Substitute
Thus, the stagnation pressure of air after the normal shock is
Substitute
Substitute
Thus, the velocity of air after the normal shock is
Want to see more full solutions like this?
Chapter 17 Solutions
Thermodynamics: An Engineering Approach
- an experimental research station is constructed on a concrete slab floor. The heat loss from the floor slab is significant, given the cold environment, and is measured to be 5 kW. The edges of the floor slab are insulated with a 60 mm thickness of cellular glass insulation. The width of this insulation at the floor slab is 0.9 m. To avoid excessive fuel consumption, the station air temperature is maintained at a slightly cool temperature of 18ºC. The station is constructed in a square shape, to keep the surface area to volume ratio low; the horizontal dimensions of the floor of the station are 20 m by 20 m. The number of occupants in the research station varies between 5 and 20, depending on the research workload.a) Determine the design outdoor temperature that was used in designing the research station.b) If the floor dimensions of the station are changed to 15 m by 25 m, would the design outdoor temperature that was used in designing the research station from part (a) change? If so,…arrow_forwardFinite element analysisarrow_forwarda station is constructed on a concrete slab floor. The heat loss from the floor slab is significant, given the cold environment, and is measured to be 5 kW. The edges of the floor slab are insulated with a 60 mm thickness of cellular glass insulation. The width of this insulation at the floor slab is 0.9 m. To avoid excessive fuel consumption, the station air temperature is maintained at a slightly cool temperature of 18ºC. The station is constructed in a square shape, to keep the surface area to volume ratio low; the horizontal dimensions of the floor of the station are 20 m by 20 m. The number of occupants in the research station varies between 5 and 20, depending on the research workload.a) Determine the design outdoor temperature that was used in designing the research station.b) If the floor dimensions of the station are changed to 15 m by 25 m, would the design outdoor temperature that was used in designing the research station from part (a) change? If so, what would it be?…arrow_forward
- Finite Element Analysisarrow_forwardFinite Element Analysisarrow_forwardA small auditorium that can accommodate 30 people allows smoking. The design engineers of the auditorium assume that the smokers each are responsible for an average of 50 micrograms per minute of tobacco smoke being added to the auditorium space. The volumetric flow rate of recirculated room air is 200 cfm. Outdoor air is also supplied, and is mixed with the recirculated room air. The system has a ventilation effectiveness of 80%. In an effort to maintain the level of particulate matter from the tobacco smoke in the auditorium to no more than 5.5 micrograms per cubic foot, filters with an effective efficiency of 90% are added to the ventilation system downstream of the point in the system where outdoor air and recirculated room air are mixed. a) What is the necessary volumetric flow rate (in cfm) for the supply outdoor air? Assume the outdoor air is clean. b) The outdoor air taken into the system becomes contaminated with tobacco smoke due to a leak in an adjacent building’s…arrow_forward
- room to be maintained with a dry-bulb temperature of 72ºF and 30% relative humidity. The room has a sensible heat factor of 0.8 and a total hourly heating load of 200,000 Btu. A flow rate of 1000 cfm of outdoor air (at 20% relative humidity and a dry-bulb temperature of 40ºF) is used. In order to maintain adequate comfort, the supply air to the room is set to a dry-bulb temperature of 120ºF. To humidify the air, steam with a specific enthalpy of 1150 Btu per pound is utilized.Determine the wet bulb temperature, specific enthalpy, and volumetric flow rate of the supply air to the room. Evaluate the increase in dry-bulb temperature as the air is sensibly heated, and the mass flow rate (in lb/hr) of steam required during the latent heating of the air. Calculate the heat added to the room during sensible heating (i.e., excluding humidification).arrow_forwardPlease can you help with the attached question? Many thanksarrow_forwardWhich of the following sequences converge and which diverge? 20) an = 21) a = n! 106 1/(Inn) 3n+1 " 22) a = 3n-1 1/n x" 23) a = , x>0 2n+1 3" x 6" 24) an 25) a, = tanh(n) = 2" xn! n² 1 26) a = sin 2n-1 n 27) a = tan(n) 1 28) a = 1 3 ++ (Inn) 200 2" 29) an n 30) =n-√√n²-n 1"1 31) a == dx nixarrow_forward
- Which of the following sequences converge and which diverge? n+1 6) a = 1- 2n (-1)+1 7) a = 2n-1 2n 8) an = n+1 1 9) a = sin + 2 n sin n 10) a = n 11) an = 12) a = 13) an 14) an 15) an 16) an n 2" In(n+1) = 81/n n n =(1+7)" = = 10n 3 n 1/n 17) an = In n 1/n n' 18) a =√4"narrow_forwardQu 3 Nickel (Ni) single crystal turbine blades burn less fuel at higher temperatures because blades are grown on [110] closed packed direction. Nickel (Ni) at 20°C is FCC, and has an atomic radius, R, of 0.125 nm. Draw a reduced-sphere unit cell for this crystal and draw and label the vector [I 10], starting from the origin (0, 0, 0). a) Calculate the length of the vector [| 10] in nanometers. Express your answer in nanometers to one significant figure. b) Calculate the linear density of Nickel in the [| 1 0] direction in [atom/nm]. Express your answer in atoms/nm to one significant figure. show all work problemsarrow_forwardhandwritten-solutions, please!arrow_forward
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY





