Thermodynamics: An Engineering Approach
9th Edition
ISBN: 9781259822674
Author: Yunus A. Cengel Dr., Michael A. Boles
Publisher: McGraw-Hill Education
expand_more
expand_more
format_list_bulleted
Concept explainers
Question
Chapter 17.7, Problem 58P
To determine
Why the maximum flow rate per unit area for a given ideal gas depends only on
Expert Solution & Answer
Want to see the full answer?
Check out a sample textbook solutionStudents have asked these similar questions
this is an asnwer but i want you write it with handwritten .
An ideal gas is brought through an isothermal compression process. The 4.00 mol of gas goes from an initial volume of
219.8 × 10-6 m³ to a final volume of 107.6 x 10-6 m³. If 8770 J is released by the gas during this process, what are the
temperature T and the final pressure pf of the gas?
T =
K
Pf =
Pa
A quantity of 0.44 moles of air enters a diesel engine at a pressure of 148 kPa and at a temperature of 60 oC. Find the volume of this quantity of air in unit of L. Take the gas constant R = 8.31 J mol-1 K-1.
Chapter 17 Solutions
Thermodynamics: An Engineering Approach
Ch. 17.7 - A high-speed aircraft is cruising in still air....Ch. 17.7 - What is dynamic temperature?Ch. 17.7 - Prob. 3PCh. 17.7 - Prob. 4PCh. 17.7 - Prob. 5PCh. 17.7 - Prob. 6PCh. 17.7 - Calculate the stagnation temperature and pressure...Ch. 17.7 - Prob. 8PCh. 17.7 - Prob. 9PCh. 17.7 - Prob. 10P
Ch. 17.7 - Prob. 11PCh. 17.7 - Prob. 12PCh. 17.7 - Prob. 13PCh. 17.7 - Prob. 14PCh. 17.7 - Prob. 15PCh. 17.7 - Prob. 16PCh. 17.7 - Prob. 17PCh. 17.7 - Prob. 18PCh. 17.7 - Prob. 19PCh. 17.7 - Prob. 20PCh. 17.7 - Prob. 21PCh. 17.7 - Prob. 22PCh. 17.7 - Prob. 23PCh. 17.7 - Prob. 24PCh. 17.7 - Prob. 25PCh. 17.7 - Prob. 26PCh. 17.7 - The isentropic process for an ideal gas is...Ch. 17.7 - Is it possible to accelerate a gas to a supersonic...Ch. 17.7 - Prob. 29PCh. 17.7 - Prob. 30PCh. 17.7 - A gas initially at a supersonic velocity enters an...Ch. 17.7 - Prob. 32PCh. 17.7 - Prob. 33PCh. 17.7 - Prob. 34PCh. 17.7 - Prob. 35PCh. 17.7 - Prob. 36PCh. 17.7 - Prob. 37PCh. 17.7 - Air at 25 psia, 320F, and Mach number Ma = 0.7...Ch. 17.7 - Prob. 39PCh. 17.7 - Prob. 40PCh. 17.7 - Prob. 41PCh. 17.7 - Prob. 42PCh. 17.7 - Prob. 43PCh. 17.7 - Is it possible to accelerate a fluid to supersonic...Ch. 17.7 - Prob. 45PCh. 17.7 - Prob. 46PCh. 17.7 - Prob. 47PCh. 17.7 - Consider subsonic flow in a converging nozzle with...Ch. 17.7 - Consider a converging nozzle and a...Ch. 17.7 - Prob. 50PCh. 17.7 - Prob. 51PCh. 17.7 - Prob. 52PCh. 17.7 - Prob. 53PCh. 17.7 - Prob. 54PCh. 17.7 - Prob. 57PCh. 17.7 - Prob. 58PCh. 17.7 - Prob. 59PCh. 17.7 - Prob. 60PCh. 17.7 - Prob. 61PCh. 17.7 - Air enters a nozzle at 0.5 MPa, 420 K, and a...Ch. 17.7 - Prob. 63PCh. 17.7 - Are the isentropic relations of ideal gases...Ch. 17.7 - What do the states on the Fanno line and the...Ch. 17.7 - It is claimed that an oblique shock can be...Ch. 17.7 - Prob. 69PCh. 17.7 - Prob. 70PCh. 17.7 - For an oblique shock to occur, does the upstream...Ch. 17.7 - Prob. 72PCh. 17.7 - Prob. 73PCh. 17.7 - Prob. 74PCh. 17.7 - Prob. 75PCh. 17.7 - Prob. 76PCh. 17.7 - Prob. 77PCh. 17.7 - Prob. 78PCh. 17.7 - Prob. 79PCh. 17.7 - Air flowing steadily in a nozzle experiences a...Ch. 17.7 - Air enters a convergingdiverging nozzle of a...Ch. 17.7 - Prob. 84PCh. 17.7 - Prob. 85PCh. 17.7 - Consider the supersonic flow of air at upstream...Ch. 17.7 - Prob. 87PCh. 17.7 - Prob. 88PCh. 17.7 - Air flowing at 40 kPa, 210 K, and a Mach number of...Ch. 17.7 - Prob. 90PCh. 17.7 - Prob. 91PCh. 17.7 - Prob. 92PCh. 17.7 - What is the characteristic aspect of Rayleigh...Ch. 17.7 - Prob. 94PCh. 17.7 - Prob. 95PCh. 17.7 - What is the effect of heat gain and heat loss on...Ch. 17.7 - Consider subsonic Rayleigh flow of air with a Mach...Ch. 17.7 - Prob. 98PCh. 17.7 - Prob. 99PCh. 17.7 - Air is heated as it flows subsonically through a...Ch. 17.7 - Prob. 101PCh. 17.7 - Prob. 102PCh. 17.7 - Prob. 103PCh. 17.7 - Air enters a rectangular duct at T1 = 300 K, P1 =...Ch. 17.7 - Prob. 106PCh. 17.7 - Prob. 107PCh. 17.7 - Air is heated as it flows through a 6 in 6 in...Ch. 17.7 - What is supersaturation? Under what conditions...Ch. 17.7 - Steam enters a converging nozzle at 5.0 MPa and...Ch. 17.7 - Steam enters a convergingdiverging nozzle at 1 MPa...Ch. 17.7 - Prob. 112PCh. 17.7 - Prob. 113RPCh. 17.7 - Prob. 114RPCh. 17.7 - Prob. 115RPCh. 17.7 - Prob. 116RPCh. 17.7 - Prob. 118RPCh. 17.7 - Prob. 119RPCh. 17.7 - Using Eqs. 174, 1713, and 1714, verify that for...Ch. 17.7 - Prob. 121RPCh. 17.7 - Prob. 122RPCh. 17.7 - Prob. 123RPCh. 17.7 - Prob. 124RPCh. 17.7 - Prob. 125RPCh. 17.7 - Prob. 126RPCh. 17.7 - Nitrogen enters a convergingdiverging nozzle at...Ch. 17.7 - An aircraft flies with a Mach number Ma1 = 0.9 at...Ch. 17.7 - Prob. 129RPCh. 17.7 - Helium expands in a nozzle from 220 psia, 740 R,...Ch. 17.7 - Helium expands in a nozzle from 0.8 MPa, 500 K,...Ch. 17.7 - Air is heated as it flows subsonically through a...Ch. 17.7 - Air is heated as it flows subsonically through a...Ch. 17.7 - Prob. 134RPCh. 17.7 - Prob. 135RPCh. 17.7 - Air is cooled as it flows through a 30-cm-diameter...Ch. 17.7 - Saturated steam enters a convergingdiverging...Ch. 17.7 - Prob. 138RPCh. 17.7 - Prob. 145FEPCh. 17.7 - Prob. 146FEPCh. 17.7 - Prob. 147FEPCh. 17.7 - Prob. 148FEPCh. 17.7 - Prob. 149FEPCh. 17.7 - Prob. 150FEPCh. 17.7 - Prob. 151FEPCh. 17.7 - Prob. 152FEPCh. 17.7 - Consider gas flow through a convergingdiverging...Ch. 17.7 - Combustion gases with k = 1.33 enter a converging...
Knowledge Booster
Learn more about
Need a deep-dive on the concept behind this application? Look no further. Learn more about this topic, mechanical-engineering and related others by exploring similar questions and additional content below.Similar questions
- For inviscid and adiabatic flow, the thermal energy equation can be written as de -PV · ü. dt Show that if the flow is also incompressible, this energy equation leads to the expression: dh dP dt dt where the enthalpy (per unit mass) is h = e + P/p.arrow_forwardA constant volume vessel contains 3 m3 of hydrogen gas at 250 kPa pressure and 550 K temperature. The hydrogen gas is then cooled until its temperature reaches 350 K. Calculate the final pressure in the tank and the amount of heat transferred. The gas constant of hydrogen gas is R = 4,124 kPa.m3 / kg.K, the average specific heat at constant volume is cv = 10,377 kJ / kg. ° C.arrow_forwardOne pound of air with an initial temperature of 200F is allowed to expand without flow between pressure of 90 and 15 psia. if the air is undergoing a process that follows pVn=C, where n=1, what is the non flow work?arrow_forward
- A monatomic ideal gas initially fills a V0 = 0.45 m3 container at P0 = 85 kPa. The gas undergoes an isobaric expansion to V1 = 1.4 m3. Next it undergoes an isovolumetric cooling to its initial temperature T0. Finally it undergoes an isothermal compression to its initial pressure and volume. 1) Calculate the work done by the gas, W1, in kilojoules, during the isobaric expansion (first process). 2) Calculate the heat absorbed Q1, in kilojoules, during the isobaric expansion (first process). 3) Write an expression for the change in internal energy, ΔU1 during the isobaric expansion (first process). 4) Calculate the work done by the gas, W2, in kilojoules, during the isovolumetric cooling (second process). 5) Calculate the heat absorbed Q2, in kilojoules, during the isovolumetric cooling (second process).arrow_forwardAn oxygen gas R = 0.2598 KJ/kg°k and k = 1.395. If 4 kg of oxygen undergo a reversible non flow constant pressure process from initial volume =1.2 cubic meter and initial pressure = 690 kPa to a state where final temperature = 600°C. What is the initial temperature ? Determine the constant volume specific heat. need a complete solution, symbol, and cancellation:)arrow_forwardFor a certain gas, R=0.277 kJ/kg-K and k=1.384. If 32.55 kJ are transferred to this gas at constant pressure in Question 5, what are the resulting temperature and volume? *Question 5: For a certain gas, R=0.277 kJ/kg-K and k=1.384. What mass of this gas would occupy a volume of 0.475 m3 at 518.14 kPa and 27.8°C?arrow_forward
- P Flag question For an ideal gas if the specific internal energy at a specific pressure and temperature of 20 °C is u=123.8 kJ/kg, what is the specific internal energy if the pressure is doubled while the temperature stays the same. Soloot ondarrow_forwardFor a gas of volumes Vi = 9.50 10-4 m3 and Vf = 1.40 10-4 m3 and pressures Pi = 2.00 106 Pa and Pf = 2.05 107 Pa, answer the following.For an isobaric process at Pi, find the internal energy change of the gas during this process.For an isovolumetric process at Vi, find the internal energy change of the gas during this process.arrow_forwardCalculate the work done W by a closed system containing m= 1kg of steam, when it is compressed (a) from pA = 0.1 MPa to pB = 2.5 MPa, isothermally at T = 400C and; (b) from pA = 0.5 MPa to pB = 2.5 MPa, isothermally at T = 600C . Use steam tables and the trapezoidal rule for integrationarrow_forward
- one pound of air with an initial temperature pf 200F is allowed to expand without flow between pressure of 90 and 15 psia. If the air is undergoing a process that follows pVn=c, where n= 1, what is heat transferred in Btu?arrow_forward2. If 37 kJ of heat is applied to a non-flow system while 54 kJ of work is done by thesystem, determine the magnitude of the change in the internal energy and explain thedirection of this change. Explain the relationships between system constants for a perfect gasarrow_forwardA car’s tire has a pressure, temperature of 32 psi and 80 deg F, respectively. By mistake,the tire was filled with 0.768 lb of carbon dioxide (R = 0.0451 BTU/lb-R) before deflatingand inflating the tire again with air. Prove that:a. 0.502 lb of air was needed to fill the tire; andb. that there was change of pressure of 6.442 psi when the car started moving andthe temperature increased by 75 deg C.arrow_forward
arrow_back_ios
SEE MORE QUESTIONS
arrow_forward_ios
Recommended textbooks for you
- Elements Of ElectromagneticsMechanical EngineeringISBN:9780190698614Author:Sadiku, Matthew N. O.Publisher:Oxford University PressMechanics of Materials (10th Edition)Mechanical EngineeringISBN:9780134319650Author:Russell C. HibbelerPublisher:PEARSONThermodynamics: An Engineering ApproachMechanical EngineeringISBN:9781259822674Author:Yunus A. Cengel Dr., Michael A. BolesPublisher:McGraw-Hill Education
- Control Systems EngineeringMechanical EngineeringISBN:9781118170519Author:Norman S. NisePublisher:WILEYMechanics of Materials (MindTap Course List)Mechanical EngineeringISBN:9781337093347Author:Barry J. Goodno, James M. GerePublisher:Cengage LearningEngineering Mechanics: StaticsMechanical EngineeringISBN:9781118807330Author:James L. Meriam, L. G. Kraige, J. N. BoltonPublisher:WILEY
Elements Of Electromagnetics
Mechanical Engineering
ISBN:9780190698614
Author:Sadiku, Matthew N. O.
Publisher:Oxford University Press
Mechanics of Materials (10th Edition)
Mechanical Engineering
ISBN:9780134319650
Author:Russell C. Hibbeler
Publisher:PEARSON
Thermodynamics: An Engineering Approach
Mechanical Engineering
ISBN:9781259822674
Author:Yunus A. Cengel Dr., Michael A. Boles
Publisher:McGraw-Hill Education
Control Systems Engineering
Mechanical Engineering
ISBN:9781118170519
Author:Norman S. Nise
Publisher:WILEY
Mechanics of Materials (MindTap Course List)
Mechanical Engineering
ISBN:9781337093347
Author:Barry J. Goodno, James M. Gere
Publisher:Cengage Learning
Engineering Mechanics: Statics
Mechanical Engineering
ISBN:9781118807330
Author:James L. Meriam, L. G. Kraige, J. N. Bolton
Publisher:WILEY
First Law of Thermodynamics, Basic Introduction - Internal Energy, Heat and Work - Chemistry; Author: The Organic Chemistry Tutor;https://www.youtube.com/watch?v=NyOYW07-L5g;License: Standard youtube license